\qquad Date: \qquad

A quadratic relationship is

- it will look like a parabola
- He - smile shape / -re - frown shape
- very symmetrical

There are 3 forms that we will see in this chapter:

1. factored form $-x$-intercepts. $(x=m, n)$

$$
y=(x-m)(x-n)
$$

2. vertex form - vertex (bottom or top)

$$
y=a(x-p)^{2}+8
$$

$$
(p, p)
$$

3. Standard form $-y$-intercept $(y=c)$

$$
y=a x^{2}+b x+c
$$

Each form has its own advantages when it comes to graphing, so it is helpful to be able to move between forms.

Example Convert to Standard Form $y=a x^{2}+b x+c$
a. $y=14 x+x^{2}-5$
b. $\quad y=(x-4)(2 x+1)$
c. $\quad y=3 x(x-6)+11$

$$
\begin{array}{r}
y=x^{2}+14 x-5 \quad F \quad D \quad I \quad L \\
y=2 x^{2}+x-8 x-4 \\
y=2 x^{2}-7 x-4
\end{array}
$$

$$
y=3 x^{2}-18 x+11
$$

Example Convert to Factored Form
d. $y=x^{2}+6 x+8$

$$
\begin{array}{lrl}
y=(x-m)(x-n) & x \\
y=x^{2}-7 x+10 & \text { f. } & y=2 x^{2}+x-6 \\
-5 \times-2=10 & \frac{4}{4} \times-3=-12 \\
-5+-2=-7 & \underline{-5}=+1
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{2}{2} \times \underline{4}=8 \\
\underline{4}=6 \\
y=x^{2}+2 x+4 x+8
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =(x+2)(x+4)
\end{aligned}
$$

e.

$$
\begin{array}{rlrl}
y & =x^{2}-5 x-2 x+10 & y & =2 x^{2}+4 x-3 x-6 \\
& =x(\text { PA 5 })-2(\text { DA } 5) ~ & =2 x(x+2)-3(x+2) \\
& =(x-5)(x-2) & =(x+2)(2 x-3)
\end{array}
$$

$$
\begin{aligned}
y & =2 x^{2}+8 x+6 \\
& =2\left(x^{2}+4 x+3\right)
\end{aligned}
$$

