Name: \qquad Date: \qquad

Learning Goal 4.1	I can generalize a pattern using linear relations.

Example An airplane is cruising at a height of 10000 metres. It descends to land. This table show the height of the plan every minute after it began its descent. The height of the plan changes at a constant rate.
a. Write an expression for the height in terms of the time since the plane began its descent.

b. Write an equation that relates the height of the plane to the time since it began its descent. $\rightarrow 2$ expressions connected by an equal sign

$$
h=10000-300 t
$$

c. What is the height of the plane after 15 minutes?
t value - replace t with 15 and simplify

$$
\begin{aligned}
h & =10000-300(15) \\
& =10000-4500
\end{aligned}
$$

The height of the plane is 5600 m after
$=5500 \mathrm{~m} \mathrm{r}$ don't forget the units. 15 min .
d. How long after beginning its descent does the plane land?
\Rightarrow the height of the plane is 0 m

$$
\begin{aligned}
h & =10000-300 t \\
0 & =10000-300 t \\
-10000 & -10000 \\
\frac{-10000}{-300} & =\frac{-300 t}{-300}
\end{aligned}
$$

It lands after $33 . \overline{3} \mathrm{~min}$,

Example I was out one night and needed to take a cab home. The company I called charges a flat fee of $\$ 4.50$ and then $\$ 2.50$ per kilometre.
a. Write an expression for the fare in terms of the fixed cost and the cost per kilometre.

$$
\text { no }=
$$

let $k=$ the number of $k m$ travelled

$$
\underset{\text { flat }}{\text { flee }} \rightarrow 4.50+2.50 \mathrm{~K} \text { price per } \mathrm{km}
$$

b. Write an equation that relates the fare to the distance travelled.
let f = the total fare of the cab ride

$$
f=4.50+2.50 k
$$

c. What is the fare for an 11 km ride?

$$
\begin{aligned}
k=11 \quad f & =4.50+2.50(11) \\
& =4.50+27.50 \\
& =\$ 32
\end{aligned}
$$

The fare will be $\$ 32.00$.
d. How many kilometres would I have to travel before my fare was $\$ 50.00$?

$$
\begin{aligned}
& f=50 \\
& 50=4.50+2.50 k \\
&-4.50-4.50 \\
& \frac{45.50}{2.50}=\frac{2.50 k}{2.50} \\
& 18.2=k
\end{aligned}
$$

You would need to travel 18.2 km for the fare to be $\$ 50.00$

