
## Section 2.1 The Tangent and Velocity Problem

Name: \_\_\_\_\_

Date: \_\_\_\_\_

 Learning Goal 2.1
 Finite limits and continuity.

A **limit** can be used to describe how a function behaves as the independent variable moves towards a certain value. But first,



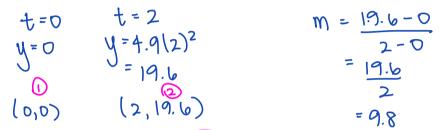
If we approach P from the right side:

If we approach P from the left side:

| Value OF |          |             |       |          |
|----------|----------|-------------|-------|----------|
| x        | $m_{PQ}$ | the SLOPE   | x     | $m_{PQ}$ |
| 2        | 3        | not the     | 0     | 1        |
| 1.5      | 2.5      | FUNCTION !! | 0.5   | 1.5      |
| 1.1      | 2.1      |             | 0.9   | 1.9      |
| 1.01     | 2.0\     |             | 0.99  | 1.99     |
| 1.001    | 2.001    |             | 0.999 | 1.999    |

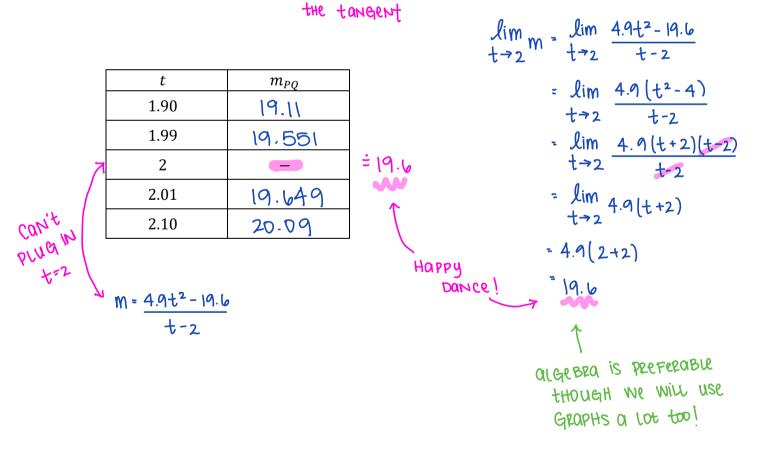
The Tangent Line is a line that just touches the GRAPH of the FUNCTION at a point La, fla)) without going through the GRAPH

$$\lim_{x \to a} m_{QP} \qquad \begin{array}{l} P(a, f(a)) & (a = 1 \text{ above}) \\ Q(z, f(z)) \end{array}$$


5

х

Calculus 12Section 2.1 The Tangent and VelocityLimits and DerivativesNUMERICALLYAlgebraicallyProblem
$$\lim_{z \to 1} m_{pp} = 2$$
 $\lim_{z \to 1} \frac{z^{2-1}}{z-1}$ So  $at(1,1)$  the equation OF the tangent line $\lim_{z \to 1} \frac{z^{2-1}}{z-1}$  $\int_{z \to 1} \frac{y-y}{z-1} = 2(z-1)$  $\lim_{z \to 1} \frac{z-1}{z-1}$  $\int_{z \to 1} \frac{y-y}{z-1} = 2(z-1)$  $\lim_{z \to 1} \frac{z+1}{z-1} = 2$  $\int_{z \to 1} \frac{y-1}{z-1} = 2z-2$ 


**Example** A rock breaks loose from the top of a tall cliff. What is its average speed during the first 2 seconds of fall?

(Note: Experiments show that a dense solid object dropped from rest to fall freely near the surface of the earth will fall  $y = 4.9t^2$  metres in the first t seconds.)



Find the speed of the rock in at the instant t = 2. Numerically

Algebraically

