\qquad

```
Learning Goal 2.1 Finite limits and continuity.
```

A limit can be used to describe how a function behaves as the independent variable moves towards a certain value. But first,

The Secant Line connects 2 points on an existing graph.
Fixed Q

$$
\begin{aligned}
m_{Q P} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{4-1}{-2-1} \\
& =\frac{3}{-3} \\
& =-1
\end{aligned}
$$

Movable Φ $\left(x, x^{2}\right)$

$$
m_{Q P}=\frac{x^{2}-1}{x-1}
$$

$$
\begin{gathered}
\uparrow \\
\text { cannot evaluate }
\end{gathered}
$$

$$
\text { at } x=1
$$

$$
\{x \mid x \neq 1, x \in \mathbb{R}\}
$$

If we approach P from the right side:
If we approach P from the left side:

x	$m_{P Q}$
2	3
1.5	2.5
1.1	2.1
1.01	2.01
1.001	2.001

The Tangent Line is a line that just touches the GRapH of tit FUNCTION at a point $(a, f(a)$) without going Hirougli tie GrapH

$$
\lim _{x \rightarrow a} m_{Q P}
$$

$$
\begin{aligned}
& P(a, f(a)) \quad(a=1 \text { above }) \\
& Q(x, f(x))
\end{aligned}
$$

numerically
$\lim _{x \rightarrow 1} m_{P P}=2$

Problem
so at $(1,1)$ the equation of the tangent line

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-1 & =2(x-1) \\
y-1 & =2 x-2
\end{aligned}
$$

$$
y=2 x-1
$$

Example A rock breaks loose from the top of a tall cliff. What is its average speed during the first 2 seconds of fall?

C the slope of the secant
(Note: Experiments show that a dense solid object dropped from rest to fall freely near the surface of the earth will fall $y=4.9 t^{2}$ metres in the first t seconds.)
$\left.\begin{array}{lll}t=0 & t=2 & m\end{array}\right)=\frac{1.9 .6-0}{2-0}$

Find the speed of the rock in at the instant $t=2$.
Numerically
\uparrow slope of
the tangent

Algebraically
$\lim _{t \rightarrow 2} m=\lim _{t \rightarrow 2} \frac{4.9 t^{2}-19.6}{t-2}$
$=\lim _{t \rightarrow 2} \frac{4.9\left(t^{2}-4\right)}{t-2}$
$=\lim _{t \rightarrow 2} \frac{4.9(t+2)(t-2)}{t-2}$
$=\lim _{t \rightarrow 2} 4.9(t+2)$
$=4.9(2+2)$
$=19.6$

$$
m=\frac{4.9 t^{2}-19.6}{t-2}
$$

$=19.6$
10
Happy
Dance!
\uparrow
algebra is preferable tHOUGH We will use GRapHs a lot too!

