Name: \qquad Date: \qquad

Learning Goal 2.1	Finite limits and continuity.

More Questions - Solutions

1. Suppose that the amount of air in a balloon after t hours is given by

$$
V(t)=t^{3}-6 t^{2}+35
$$

Estimate the instantaneous rate of change of the volume after 5 hours numerically. Confirm algebraically.

$$
\begin{array}{rlrl}
V(5) & =(5)^{3}-6(5)^{2}+35 \\
& =125-150+35 & m & =\frac{\left(t^{3}-6 t^{2}+35\right)-10}{t-5} \\
& =10 & & =\frac{t^{3}-6 t^{2}+25}{t-5}
\end{array}
$$

Numerically		Algebraically
		$\lim _{t \rightarrow 5} t^{3}-6 t^{2}+25$
x	m	$\lim _{t \rightarrow 5} m=\lim _{t \rightarrow 5} \frac{t-5}{}$
4.8	13.24	$(t-5)\left(t^{2}-t-5\right)$
4.9	14.11	$=\lim _{t \rightarrow 5} \frac{t-5}{}$
4.99	14.9101	$=\lim t^{2}-t-5$
5	-	$t \rightarrow 5$
5.01	15.0901	$=(5)^{2}-(5)-5$
5.1	15.91	$=15$
5.2	16.84	

Problem

2. Consider numerically, then graphically (using technology) what happens to the y - value as the x value gets close to zero of

$$
y=\frac{\sin x}{x}
$$

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

3. Consider numerically, then graphically (using technology) what happens to the y - value as the x value gets close to zero of

$$
y=\frac{\tan (3 x)}{\tan (5 x)}
$$

