\qquad Date: \qquad

Learning Goal 3.1	Using all basic derivative rules.

Derivative

the slope of tile tangent at any point on

$$
y=f(x)
$$

Derivative Function a GRapH of tote value of the tanGent at any point
$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
Graphically
$=f^{\prime}(x)$

- + $/$ - slope
- inc/dec slope - slope = 0

Example Given the function $f(x)=2 x+1$, determine the equation of $f^{\prime}(x)$. Graph both functions.

Example Given the function $f(x)=x^{2}$, determine the equation of $f^{\prime}(x)$. Graph both functions.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h} \\
& =2 x
\end{aligned}
$$

Example Sketch the graph of $f^{\prime}(x)$ when

Example Below is the sketch of a function $y=f(x)$. Sketch the graph of its derivative $y=f^{\prime}(x)$.

