Name: \qquad Date: \qquad

Learning Goal 3.1	Graphing and the characteristics of a graph (e.g. degree, extrema, zeros, end-behaviour).

Terminology

Degree	Leading Coefficient	Constant

Example A polynomial function is a function that can be written in the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{2} x^{2}+a_{1} x+a_{0},
$$

where n is a whole number, x is a variable, the coefficients a_{n} to a_{0} are real numbers. Which of the following functions are polynomials? For those that are polynomial functions, state the degree, the leading coefficient, and the constant term.

Function	Type of Function	Degree	Leading Coefficient	Constant term
a. $g(x)=\sqrt{x}+5$				
b. $h(x)=2 x^{3}-4 x+\sqrt{8}$				
c. $f(x)=3 x^{4}$				
d. $k(x)=3^{x}+11$				
e. $f(x)=x-7$				
f. $y=-0.2$				
g. $g(x)=5+4 x+\frac{1}{x}$				
h. $y=2 x^{3}+3 x^{2}-4 x-1$				
i. $f(x)=\frac{2}{3} x^{4}-5 x^{3}-12 x+0.56$				
j. $y=3 x^{-2}+4 x^{2}-6$				

End behaviour or $\lim _{x \rightarrow \pm \infty} f(x)$

Example Use DESMOS to graph each of the following polynomial functions and complete the table:

	$g(x)=-x^{4}+10 x^{2}+5 x-4$	$f(x)=x^{3}+x^{2}-5 x+3$
Polynomial Type		
End Behaviour		
Domain		
Range		
Number of x-intercepts		
y-intercept		
Maximum and/or Minimum Values		

Example The x-intercepts of the graph of a function are the zeros of the function. We can find the zeros the function by graphing the function and determining the x-intercepts. Approximate the zeros of the function $f(x)=x^{4}-15 x^{2}+20$ (to nearest tenth).

