Name: \qquad Date: \qquad

Learning Goal 3.1	Graphing and the characteristics of a graph (e.g. degree, extrema, zeros, end-behaviour).

More Questions

Use DESMOS to graph each of the following polynomial functions and complete the table:

	$p(x)=-2 x^{5}+5 x^{3}-x$	$h(x)=x^{4}+4 x^{3}-x^{2}-16 x-12$
Polynomial Type		
End Behaviour		
Domain		
Range		
Number of x - intercepts		
y-intercept		
Maximum and/or Minimum Values		

1. The x-intercepts of the graph of a function are the zeros of the function. We can find the zeros the function by graphing the function and determining the x-intercepts. Approximate the zeros of the function $f(x)=x^{3}-9 x^{2}+20 x$. What is another way to do this?
