Polynomial Functions

Name:	Date:
Name.	Date.

Learning Goal 3.1	Graphing and the characteristics of a graph (e.g. degree,
	extrema, zeros, end-behaviour).

More Questions

Use DESMOS to graph each of the following polynomial functions and complete the table:

	$p(x) = -2x^5 + 5x^3 - x$	$h(x) = x^4 + 4x^3 - x^2 - 16x - 12$
Polynomial Type		
End Behaviour		
Domain		
Range		
Number of x — intercepts		
y — intercept		
Maximum and/or Minimum Values		

1. The x —intercepts of the graph of a function are the **zeros of the function**. We can find the zeros the function by graphing the function and determining the x —intercepts. Approximate the zeros of the function $f(x) = x^3 - 9x^2 + 20x$. What is another way to do this?