a < 0q < 0

Name: __

Date: _____

Learning Goal 4.1

Given a quadratic equation, identify the number of solutions, zeros, roots or x — intercepts.

1. Determine the number of zeros of the following functions.

a.
$$y = -0.07(x - 3.1)^2 - 4.25$$
 b. $y = x^2 + 18x + 81$

b.
$$y = x^2 + 18x + 81$$

= $(x + 9)^2$

Thus there is one solution.

c. $y = -x^2 + 4x - 1$

 $=-(x^2+2)^2+3$

 $=-(x^2+4x+4-4)-1$

 $=-(x^2+4x+4)+4-1$ $=-(x^2+2)^2+4-1$

Thus there are no solutions.

Thus there are two solutions.

d.
$$y = 2(x-3)^2$$
 $a > 0$
 $q = 0$

Thus there is one solution.

e.
$$y = x^2 - 5x - 14$$

= $(x - 7)(x + 2)$

Thus there are two solutions.

e.
$$y = x^2 - 5x - 14$$

 $= (x - 7)(x + 2)$
Thus there are two solutions.
f. $y = x^2 + 6x + 10$
 $= (x^2 + 6x + 9 - 9) + 10$
 $= (x^2 + 6x + 9) - 9 + 10$
 $= (x + 3)^2 - 9 + 10$
 $= (x + 3)^2 + 1$

Thus there are no solutions.

2. The manager at a clothing store has determined that the function $R(x) = 600 - 6x^2$ models the expected weekly revenue from sweatshirts as the price changes (R is the revenue, in dollars, and x is the price change, in dollars). What price increase or decrease will result in no revenue and explain why.

$$R(x) = 600 - 6x^{2}$$

$$= 6(100 - x^{2})$$

$$= 6(10 - x)(10 + x)$$

$$10 - x = 0$$
 $10 + x = 0$ $x = -10$ $x = 10$

An increase of \$10 will cause zero revenue because your product is too expensive, and no one will pay your price.

A decrease of \$10 will also cause zero revenue because you are now giving away your product for free.