Name: _____

Date: _____

Learning Goal 6.1

Using identities to reduce complexity in expressions and solve equations.

Identity

Example $x^2 - 9 = (x - 3)(x + 3)$ is an identity. Identities can be **proven** or **verified**.

a. Verify the function

Numerically

b. Prove the identity

$$x^2 - 9 | (x - 3)(x + 3)$$

Pythagorean Identities

$$\sin^2 x + \cos^2 x = 1$$
 $\tan^2 x + 1 = \sec^2 x$
 $1 + \cot^2 x = \csc^2 x$

Quotient Identities

$$\tan x = \frac{\sin x}{\cos x} \qquad \cot x = \frac{\cos x}{\sin x}$$

$$\csc x = \frac{1}{\sin x}$$
 $\sec x = \frac{1}{\cos x}$ $\cot x = \frac{1}{\tan x}$

Example a. Verify that $\tan^2 x + 1 = \sec^2 x$ using $x = \frac{\pi}{6}$

$$x=\frac{\pi}{6}$$

Verify that $\tan^2 x + 1 = \sec^2 x$ could be an identity by starting from the original Pythagorean identity.

Example State any restrictions (non-permissible values) for the identity

$$\frac{\cot x}{\csc x \cos x}$$

then simplify.

Example Prove $1 + \cot^2 x = \csc^2 x$.

$$\frac{1 + \cot^2 x}{\cos^2 x}$$