Name: _____ Date: _____

A quadratic relationship is one that has a degree of ______.

The ______ form of a quadratic function is ______.

The "basic" quadratic function is $y = x^2$. Complete the table of values and then graph the function.

х	-4	-3	-2	-1	0	1	2	3	4
у									

This shape is called a

Graph features:

Vertex

• *y*-intercept

Axis of symmetry

Example Consider $y = x^2 + 4x + 3$.

- From this form of the equation we know the
- If we factor this equation, we will know the

• We can find the vertex by

• The axis of symmetry

х	-5	-4	-3	-2	-1	0	1
у							

We are going to use http://www.mathopenref.com/quadraticexplorer.html to explore quadratic functions.

• What happens as *a* changes?

• What happens if a = 0?

• What happens as *b* changes?

• What happens if b = 0?

• What happens as *c* changes?

• What happens if c = 0?

Example For the graphs below, predict whether a, b, c are positive, negative or zero.

a.

b.

c.

а

b

С