Name: \qquad Date: \qquad
A quadratic relationship is one that has a degree of \qquad
The \qquad standard form of a quadratic function is \qquad $y=a x^{2}+b x+c$.
The "basic" quadratic function is $y=x^{2}$. Complete the table of values and then graph the function.
\downarrow

x	-4	-3	-2	-1	0	1	2	3	4
y	16	9	4	1	0	1	4	9	16

This shape is called a
Graph features:

- vertex is the middle your parabola.
- your mirror point

$$
\begin{aligned}
& x y \\
& (0,0)
\end{aligned}
$$

- x-intercept is where you cross or touch the

$$
\begin{aligned}
& x \text {-axis } \\
& (0,0)
\end{aligned}
$$

- y-intercept is where you cross the y-axis

$$
(0,0)
$$

yet $(0,0)$

- Axis of symmetry mirror that runs through the vertex

$$
x=0
$$

Example Consider $y=x^{2}+4 x+3$.

- From this form of the equation we know the

$$
\begin{aligned}
& \text { oof the equation we know the } \\
& \text { Standard form } \begin{array}{l}
\text { - we know the } y \text {-intercept } \\
\qquad(x=0)
\end{array} \\
& \qquad y=(0)^{2}+4(0)+3
\end{aligned}
$$

- If we factor this equation, we will know the

$$
\begin{aligned}
& \frac{3}{3} \times \frac{1}{1}=3 \\
& +1
\end{aligned}
$$

$$
\begin{aligned}
& y=x^{2}+3 x+x+3 \\
&=x(p A+B)+(p x+3) \\
&=(x+3)(x+1) \\
& 0=(x+3)(x+1) \\
& y
\end{aligned}
$$

- We can find the vertex by
- we can find the x-intercepts $(y=0)$
by finding the distance $x+3=0$ or $x+1=0$ between the x-int. $\quad-3,-3 \quad-1 \quad-1$
and cutting it in half.

$$
x=-3
$$

$$
x=-1
$$

- The axis of symmetry

$$
x=-2
$$

$$
\begin{aligned}
y & =(-2)^{2}+4(-2)+3 \\
& =4-8+3 \\
& =-4+3 \\
& =-1 \quad \text { vertex }(-2,-1)
\end{aligned}
$$

x	-5	-4	-1	-1	0	0
v	7	3	0	-1	0	3

We are going to use http://www.mathopenref.com/quadraticexplorer.html to explore quadratic functions.

- What happens as a changes?
if a is -re - frowning
if a is tee -8 milling

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& \text { - What happens if } a=0 \text { ? }
\end{aligned}
$$

- not a parabola
- just a line
- big a value makes it tall $\{$ skinny
- What happens as b changes?
- the curve dances
- What happens as c changes?
- The y-intercept
changes
- What happens if $b=0$?
- the vertex is on the y-axis.
- What happens if $c=0$?
the y-intercept is
z aero

Example For the graphs below, predict whether a, b, c are positive, negative or zero.
a.

$a+\mathrm{ve}$
b tie Lvertex has tie x value)
c
b.

c.

