Name: \qquad Date: \qquad

Learning Goal 7.2	Solving equations with same base and with different bases, including base e.

Example Write each expression without brackets and with positive exponents.
a. $\frac{24 m^{5} p^{-3} q^{4}}{-4 m^{4} p^{2} q^{-2}}$
b. $\left(\frac{18 x^{-2} y^{3}}{54 x^{-6} y^{-1}}\right)^{3} \div \frac{\left(6 x^{2} y^{-3}\right)^{-2}}{\left(x^{-4} y^{2}\right)^{3}}$

Example Convert each of the following to the base indicated.
a. 32^{x} to base 2
b. 81^{x-2} to base 3
c. $\frac{1}{64^{2 x}}$ to base 4

Example Simplify the following by converting each term to a common base.
a. $\frac{8^{3 x-4} \cdot 16^{4-x}}{64^{1-2 x}}$
b. $\left(9^{2 x+3} \div 27^{3 x-1}\right) \cdot 81^{x-1}$

Definition An exponential equation is an equation where the variable appears in the exponent.
(For now, we are only solving exponential equations with the same base using algebraic methods)
Example Solve and check.
a. $\quad 2^{(4 x-1)}=8^{2 x}$
b. $27^{x-4}=\left(\frac{1}{9}\right)^{2 x-8}$
\square
Example A population of ants starts with 4000. After 4 weeks the estimated count is 128000 ants in the colony. What is the doubling period for this population?

