Name: \qquad Date: \qquad

Learning Goal 8.1	Solving exponential and logarithmic equations with same base and with different bases, including base e.

Example Write each expression without brackets and with positive exponents.
a. $\frac{24 m^{5} p^{-3} q^{4}}{-4 m^{4} p^{2} q^{-2}}$
$\frac{m^{5}}{m^{4}}=m^{5-4}=m$
b. $\left(\frac{18 x^{-2} y^{3}}{54 x^{-6} y^{-1}}\right)^{3} \div \frac{\left(6 x^{2} y^{-3}\right)^{-2}}{\left(x^{-4} y^{2}\right)^{3}}$
$=\frac{6 m^{5} p^{-3} q^{4}}{-m^{4} p^{2} q^{-2}}$
$\frac{p^{-3}}{P^{2}}=p^{-3-2}=P^{-5}$
$=\frac{1}{p^{5}}$
$=\frac{6 m p^{-3} q^{4}}{-p^{2} q^{-2}}$
$\overline{p^{2} p^{3}}$
$=\frac{1}{p^{5}}$
$=\left(\frac{x^{6} y^{3} y}{3 x^{2}}\right)^{3} \div \frac{1}{\left(x^{-4} y^{2}\right)^{3}\left(6 x^{2} y^{-3}\right)^{2}}$
$=\left(\frac{x^{4} y^{4}}{3}\right)^{3} \times\left(x^{-4} y^{2}\right)^{3}\left(6 x^{2} y^{-3}\right)^{2}$
$=\frac{x^{12} y^{12}}{3^{3}} \times x^{-12} y^{6} \times 6^{2} x^{4} y^{-6}$
$=\frac{6^{2} x^{4} y^{12}}{3^{3}}=\frac{4 x^{4} y^{12}}{3}$

$$
=\frac{6 m q^{4}}{-p^{5} q^{-2}}=\frac{6 m q^{6}}{-p^{5}}
$$

$$
=-\frac{6 m g^{6}}{p^{9}}
$$

Example Convert each of the following to the base indicated.
a. 32^{x} to base 2
b. 81^{x-2} to base 3
c. $\frac{1}{64^{2 x}}$ to base 4
$=\left(2^{5}\right)^{x}$
$=\left(3^{4}\right)^{x-2}$
$=2^{5 x}$
$=3^{4(x-2)}$
$=\left(4^{-3}\right)^{2 x}$
$=3^{4 x-8}$
$=4^{-6 x}$

Example Simplify the following by converting each term to a common base.
a. $\frac{8^{3 x-4} \cdot 16^{4-x}}{64^{1-2 x}}$
$=\frac{\left(2^{3}\right)^{3 x-4}\left(2^{4}\right)^{4-x}}{\left(2^{6}\right)^{1-2 x}}$
$=\frac{2^{9 x-12} 2^{16-4 x}}{2^{6-12 x}}$
$=\frac{2^{5 x+4}}{2^{6-12 x}}=2^{17 x-2}$
b. $\left(9^{2 x+3} \div 27^{3 x-1}\right) \cdot 81^{x-1}$
$=\left(\left(3^{2}\right)^{2 x+3} \div\left(3^{3}\right)^{3 x-1}\right) \times\left(3^{4}\right)^{x-1}$
$=\left(3^{4 x+6} \div 3^{9 x-3}\right) \times 3^{4 x-4}$
$=3^{-5 x+9} \times 3^{4 x-4}$
$=3^{-x+5}$
$=3^{5-x}$

Assignment

Definition An exponential equation is an equation where the variable appears in the exponent.

$$
y=b^{x}
$$

(For now, we are only solving exponential equations with the same base using algebraic methods)
Example Solve and check.
a. $\quad 2^{(4 x-1)}=8^{2 x}$
$2^{4 x-1}=\left(2^{3}\right)^{2 x}$
$2^{4 x-1}=2^{6 x}$
$4 x-1=6 x$
$-4 x$
$\frac{-1}{2}=\frac{2 x}{2}$

$$
x=-\frac{1}{2}
$$

b. $27^{x-4}=\left(\frac{1}{9}\right)^{2 x-8}$

$$
\begin{aligned}
\left(3^{3}\right)^{x-4} & =\left(\frac{1}{3^{2}}\right)^{2 x-8} \\
3^{3 x-12} & =\left(\frac{1}{3}\right)^{4 x-16} \\
3^{3 x-12} & =3^{-4 x+16} \\
3 x-12 & =-4 x+16 \\
7 x-12 & =16 \\
7 x & =28 \\
x & =4
\end{aligned}
$$

Steps

- Make the Bases Match
- cancel bases / equate the exponents.
- solve.

Example A population of ants starts with 4000. After 4 weeks the estimated count is 128000 ants in the colony. What is the doubling period for this population?

$$
\begin{aligned}
32 & =(2)^{4 / d} \\
2^{5} & =2^{4 / d} \\
5 & =\frac{4}{d} \Rightarrow d=\frac{4}{5} \\
5 d & =4
\end{aligned}
$$

THE DOUBLING PERIOD OF THE COLONY IS
$\frac{4}{5}$ of a week.

Assignment
p. 364 \# $1-8,10,12,15, C 1, C 2$

