Exponential Functions

FDHAD

Name: _____

Date: _____

Learning Goal 8.1	Solving exponential and logarithmic equations with same base
	and with different bases, including base <i>e</i> .

Example Write each expression without brackets and with positive exponents.

Example Convert each of the following to the base indicated.

a. 32^{x} to base 2 = $(2^{5})^{x}$ = 2^{5x} = 3^{4x-2} = 3^{4x-2} = 4^{-5x} = 4^{-5x} = 4^{-5x}

Example Simplify the following by converting each term to a common base.

a.
$$\frac{8^{3x-4} \cdot 16^{4-x}}{64^{1-2x}}$$

=
$$\frac{(2^3)^{3x-4} (2^4)^{4-x}}{(2^6)^{1-2x}}$$
b.
$$(9^{2x+3} \div 27^{3x-1}) \cdot 81^{x-1}$$
=
$$\left((3^2)^{2x+3} \div (3^3)^{3x-1}\right) \times (3^4)^{2-1}$$
=
$$\left(3^{4x+6} \div 3^{9x-3}\right) \times 3^{4x-4}$$
=
$$\frac{2^{9x-2} 2^{16-4x}}{2^{6-12x}}$$
=
$$3^{-5x+9} \times 3^{4x-4}$$

Assignment

p. 364 # 1 – 8, 10, 12, 15, C1, C2

Definition An exponential equation is an equation where the variable appears in the exponent.

y=b²

(For now, we are only solving **exponential equations with the same base** using algebraic methods)

Example Solve and check.

$\left(3^{3}\right)^{2^{-4}} = \left(\frac{1}{3^{2}}\right)^{2^{2^{-8}}}$
$3^{3z-12} = \left(\frac{1}{3}\right)^{4z-1b}$ $3^{3z-12} = 3^{-4z+1b}$
32-12 = -42+16
7z - 12 = 16
$\pi = 4$

Steps	
• Make the Bases Match	
· CONCEL BASES / EQUATE THE E	xponents
• Solve.	

Example A population of ants starts with 4000. After 4 weeks the estimated count is 128000 ants in the

colony. What is the doubling period for this population? $I = I_{0} \begin{pmatrix} q \\ q \end{pmatrix}^{1/d} \quad \text{GROWTHI Pate time} \\ \text{SPAN} \\ \text{GROWTHI Pate time} \\ \text{SPAN} \\ \text{CONDITIONS} \quad \text{Initial Pate 128 DOD = 4000 } (2)^{4/d} \\ 32 = (2)^{4/d} \\ 2^{5} = 2^{4/d} \\ 5^{5} = \frac{4}{d} \Rightarrow d = \frac{4}{5} \\ \text{Fr a week.} \\ \frac{4}{5} \text{ of a week.} \\ \text{Fr a week.} \\ \frac{4}{5} \text{ of a week.} \\ \text{Fr a week.} \\ \text{F$

Assignment

p. 364 # 1 – 8, 10, 12, 15, C1, C2

Quiz Next Day!