Name: \qquad Date: \qquad

Learning Goal 8.1

Solving exponential and logarithmic equations with same base and with different bases, including base e.

More Questions - Solutions

1. Solve and check.
a. $5^{x+1} \times 5^{x}=625$
$\begin{aligned} 5^{x+1} \times 5^{x} & =5^{4} \\ 5^{2 x+1} & =5^{4} \\ 2 x+1 & =4 \\ 2 x & =3 \\ x & =\frac{3}{2}\end{aligned}$
b. $\frac{8^{x+6}}{16^{2 x-1}}=32^{3 x-4}$
$\frac{\left(2^{3}\right)^{x+6}}{\left(2^{4}\right)^{2 x-1}}=\left(2^{5}\right)^{3 x-4}$
$\frac{2^{3(x+6)}}{2^{4(2 x-1)}}=2^{5(3 x-4)}$
$\frac{2^{3 x+18}}{2^{8 x-4}}=2^{15 x-20}$
$2^{(3 x+18)-(8 x-4)}=2^{15 x-20}$
$2^{22-5 x}=2^{15 x-20}$

$$
22-5 x=15 x-20
$$

$$
22=20 x-20
$$

$$
42=20 x
$$

$$
x=\frac{42}{20}
$$

$$
=\frac{21}{10}
$$

c. $2^{x-1} \times 4^{3 x}=\left(\frac{1}{8}\right)^{4-x}$
$2^{x-1} \times\left(2^{2}\right)^{3 x}=\left(\frac{1}{\left(2^{3}\right)}\right)^{4-x}$
$2^{x-1} \times 2^{6 x}=\left(2^{-3}\right)^{4-x}$
$2^{7 x-1}=\left(2^{-3}\right)^{4-x}$
$2^{7 x-1}=2^{3(x-4)}$
$2^{7 x-1}=2^{3 x-12}$
$7 x-1=3 x-12$
$4 x-1=-12$
$4 x=-11$
$x=-\frac{11}{4}$
d. $\left(5^{3}\right)^{x^{2}+5}=\left(\frac{1}{5^{2}}\right)^{-2 x^{2}+4}$

$$
\begin{aligned}
5^{3\left(x^{2}+5\right)} & =\left(\frac{1}{5^{2}}\right)^{-2 x^{2}+4} \\
5^{3\left(x^{2}+5\right)} & =\left(5^{-2}\right)^{-2 x^{2}+4} \\
5^{3\left(x^{2}+5\right)} & =5^{2\left(2 x^{2}-4\right)} \\
5^{3 x^{2}+15} & =5^{4 x^{2}-8} \\
3 x^{2}+15 & =4 x^{2}-8 \\
15 & =x^{2}-8 \\
23 & =x^{2} \\
x & = \pm \sqrt{23}
\end{aligned}
$$

2. Strontium - 90 has a half - life of 25 years.
a. Write an equation to determine the amount of Strontium - 90 remaining as a function of the number of years.

$$
A=A_{0}\left(\frac{1}{2}\right)^{t / 25}
$$

b. How much time has elapsed if only $1 / 32$ of the strontium - 90 remains in a sample?

$$
\begin{aligned}
\frac{1}{32} & =\frac{1}{2^{5}} \\
& =\left(\frac{1}{2}\right)^{5} \\
5 & =\frac{t}{25} \\
t & =125 \text { years }
\end{aligned}
$$

c. Approximately how long will it take until 100 gram sample decays to 15 grams?

$$
\begin{aligned}
15 & =100\left(\frac{1}{2}\right)^{t / 25} \\
\frac{15}{100} & =\left(\frac{1}{2}\right)^{t / 25} \quad 0.15 \approx \frac{1}{8} \\
\frac{1}{8} & \approx\left(\frac{1}{2}\right)^{t / 25} \\
\left(\frac{1}{2}\right)^{3} & \approx\left(\frac{1}{2}\right)^{t / 25} \\
3 & \approx \frac{t}{25} \\
t & \approx 75 \text { years }
\end{aligned}
$$

