Name: _____

Date: _____

Amount	А	full amount of the loan or investment at the
Interest	I	The money earned (by you or bank)
Principle	P	The Initial amount of money invested or loaned
Rate	Ŷ	interest rate (used as a decimal)
Term	f	length of the investment / loan
Compounding Period	n	how often interest is added

1. Find the compounded amount if you were to put \$400 in a bank account if the interest rate is 4.75% for 5 years and the interest is compounded weekly.

	0	
A		
Ι	X	
Р	400	
r	4.752.	$=\frac{4.75}{100}=0.04$
t	ち	•
n	52	

75

ly.

$$A = P(1 + \frac{r}{n})^{nt}$$

$$= 400 (1 + 0.0475)^{52\times5}$$

$$= 400 (1 + 0.000913)^{260}$$

$$= 400 (1.000913)^{260}$$

$$= 400 (1.26794) \qquad carry lots \\ of decimal places$$
Handout $\frac{1}{1000912} = \frac{1}{2} \frac{507.18}{2}$
Carry lots $\frac{1}{2} \frac{1}{2} \frac{1}{2$

Finish This Handout

2. Margaret invested \$2000 in an account with an interest rate of 8% for 3 years, compounded quarterly. How much interest does she earn?

A		
I	?	
Р	2000	
r	87.	$=\frac{8}{100}=0.08$
t	3	(00
n	4	

$$A = P(1+r)^{nt} \qquad A = P+T$$

$$= 2000 (1+\frac{0.08}{4})^{4\times3} \qquad 2536.48 = 2000+T$$

$$= 2000 (1+0.02)^{12} \qquad -2000 \qquad -2000$$

$$T = ^{5}536.48$$

$$= 2000 (1.02)^{12}$$

$$= 2536.48$$

3. Calculate the final amount of a deposit of \$5000 invested at 3.1% per year, compounded annually for 5 years.

$$A = P(1 + r)^{nt}$$

$$= 5000(1 + 0.031)^{1\times 5}$$

$$= 5000(1 + 0.031)^{5}$$

$$= 5000(1.031)^{5}$$

$$= 5000(1.1649)$$

$$= $5824.56$$

4. Calculate the final amount of a deposit of \$650 invested at 4.75% per year, compounded monthly for 3 years.

$$A = P(1+r)^{nt}$$

$$= 650(1+0.0475)^{12x3}$$

$$= 650(1+0.003968)^{36}$$

$$= 650(1.003958)^{36}$$

$$= 650(1.1528)^{36}$$

$$= 650(1.1528)^{36}$$

$$= $749.34$$

1. Calculate the final amount of a deposit of \$1000 invested at 1.25% per year, compounded semiannually for 2 years.

Α	?		
I	X		
Р	1000		
r	1.25%	= 1.25	= 0.0125
t	2		
n	2		

 $A = P\left(1 + \frac{r}{n}\right)^{nt}$ = 1000 $\left(1 + \frac{0.0125}{2}\right)^{2\times 2}$ = 1000 $\left(1 + 0.00625\right)^{4}$ = 1000 $\left(1.00625\right)^{4}$ = 1000 $\left(1.02524\right)$ = 8 1025.24

2. Tabitha deposits \$4275 into an investment account that offers 3.25% interest per year, compounded daily. How much will her investment be worth after 7 years?

Α	?	
I	X	
Р	4275	
r	3.252	$= \frac{3.25}{100} = 0.0325$
t	7	
n	365	

$$A = P(1 + \frac{r}{n})^{nt}$$

= 4275 (1 + 0.0325)^{365×7}
= 4275 (1 + 0.0000 890)²⁵⁵⁵
= 4275 (1.0000890)²⁵⁵⁵
= 4275 (1.25544)

3. Calculate how much *interest* you would owe on a loan of \$8500 at 2.75%, compounded quarterly, for a term of 4 years. $A = P \left[1 + r \right]^{n+1}$

А			
I	?		
Р	850D		
r	2.759	61	
t	4		
n	4		

$$F = P\left(1+\frac{r}{n}\right)^{n+1}$$

$$= 8500\left(1+\frac{0.0275}{4}\right)^{4\times4}$$

$$= 8500\left(1+0.006875\right)^{16}$$

$$= 8500\left(1.006875\right)^{16}$$

$$= 8500\left(1.115858\right)$$

$$= 9484.79$$

$$A = P + I$$

$$= 9484.79 = 8500 + I$$

$$= 8500 - 8500$$
Handout $I = 984.79 . Out:

Assignment

Finish This Handout

Quiz: Next Day!