Name: \qquad Date: \qquad

Amount	A	full amount of the loan or investment at the end of the term
Interest	I	The money earned (by you or bank) investment ban
principle	P	The Initial amount of money invested or loaned
Rate	r	interest rate (used as a decimal)
Term	t	length of the investment/loan
compounding period	n	how often interest is added

$$
A=P\left(\left\lvert\,+\left(\frac{r}{n}\right)\right.\right)^{\substack{n t}} \begin{aligned}
& \text { maintaining of times interest is } \\
& \text { added over the } \\
& \text { term }
\end{aligned}
$$

1. Find the compounded amount if you were to put $\$ 400$ in a bank account if the interest rate is 4.75% for 5 years and the interest is compounded weekly.

A	$?$
I	$>$
P	400
r	4.752
t	5
n	52

Assignment

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
&=400\left(1+\frac{0.0475}{52}\right)^{52 \times 5} \\
&=400(1+0.000913)^{260} \\
&=400(1.000913)^{260} \\
&=400(1.26794) \quad \text { carry lots } \\
&=\$ 50718 \\
& \text { of decimal } \\
& \text { places }
\end{aligned}
$$

2. Margaret invested $\$ 2000$ in an account with an interest rate of 8% for 3 years, compounded quarterly. How much interest does she earn?

A	
I	$?$
P	2000
r	$8 ?$
t	3
n	4

$$
\begin{array}{ll}
A=P\left(1+\frac{r}{n}\right)^{n t} & A=P+I \\
=2000\left(1+\frac{0.08}{4}\right)^{4 \times 3} & \\
=2000(1+0.02)^{12} & \\
=2000-2000+I \\
=2000(1.02)^{12} & I=\$ 536.48 \\
=2000(1.2682) & \\
=2536.48 &
\end{array}
$$

3. Calculate the final amount of a deposit of $\$ 5000$ invested at 3.1% per year, compounded annually for 5 years.

A	$?$
I	$>$
P	5000
r	3.1%
t	5
n	1

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
& =5000\left(1+\frac{0.031}{1}\right)^{1 \times 5} \\
& =5000(1+0.031)^{5} \\
& =5000(1.031)^{5} \\
& =5000(1.1649) \\
& =\$ 5824.56
\end{aligned}
$$

4. Calculate the final amount of a deposit of $\$ 650$ invested at 4.75% per year, compounded monthly for 3 years.

A	$?$
I	
P	650
r	$4.75 ?$
t	3
n	12

$$
\begin{aligned}
A & =p\left(1+\frac{r}{n}\right)^{n t} \\
& =650\left(1+\frac{0.0475}{12}\right)^{12 \times 3} \\
& =650(1+0.003958)^{36} \\
& =650(1.003958)^{36} \\
& =650(\underbrace{1.1528}_{\uparrow} \underbrace{100 \%}_{15.28 \%} \\
& =\$ 749.34
\end{aligned}
$$

1. Calculate the final amount of a deposit of $\$ 1000$ invested at 1.25% per year, compounded semiannually for 2 years.

A	$?$
1	X
p	1000
r	$1.25 ?$
t	2
n	2

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
& =1000\left(1+\frac{0.0125}{2}\right)^{2 \times 2} \\
& =1000(1+0.00625)^{4} \\
& =1000(1.00625)^{4} \\
& =1000(1.02524) \\
& =\$ 1025.24
\end{aligned}
$$

2. Tabitha deposits $\$ 4275$ into an investment account that offers 3.25% interest per year, compounded daily. How much will her investment be worth after 7 years?

A	$?$
I	x
P	4275
r	3.252
t	7
n	365

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
& =4275\left(1+\frac{0.0325}{365}\right)^{365 \times 7} \\
& =4275(1+0.0000890)^{2555} \\
& =4275(1.0000890)^{2555} \\
& =4275(1.25544) \\
& =\$ 5367.03
\end{aligned}
$$

3. Calculate how much interest you would owe on a loan of $\$ 8500$ at 2.75%, compounded quarterly, for a term of 4 years.

A	
I	$?$
P	8500
r	$2.75 ?$
t	4
n	4

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
& =8500\left(1+\frac{0.0275}{4}\right)^{4 \times 4} \\
& =8500(1+0.006875)^{16} \\
& =8500(1.006875)^{16} \\
& =8500(1.115858) \\
& =9484.79
\end{aligned}
$$

$$
A=P+I
$$

$$
9484.79=8500+I
$$

$$
-8500 \quad-8500
$$

