Name:

Date:

Amount	A	The full amount after the ban or investment is complete
Interest	エ	The amount of money owed at the end of
Principle	P	Initial amount of the 10an or investment
Rate	٢	Annual interest rate (used as a decimal)
Term	t	Length of the loan or investment
Compounding Period	n	How many times a year interest is calculated and added

$$A = P(1+r)^{nt}$$
 # of times $-P - P$

maintains add is calculated the the and added

principle interest

1. If Greg invested \$500 for 5 years, compounded monthly, at a rate of 6%, how much interest would he earn on his investment?

Α		
I	?.	
Р	500	
r	6%	$=\frac{b}{100}=0.00$
t	5	
n	12	

$$A = P(1+\Gamma)^{nt}$$

$$= 500(1+0.06)^{0.05}$$

$$= 500(1+0.005)^{0.00}$$

$$= 500(1.005)^{0.00}$$

$$= 500(1.34885)$$

$$= $^{8}674.43$$

$$A = P + T$$
 $674.43 = 600 + T$
 $-500 - 500$
 $T = 9174.43$

- 2. Sam charges \$4000.00 to a credit card that charges 20.00% interest per annum, compounded monthly.
 - a. How much will he owe after 3 years?

Α	7	
ı		
Р	4000	
r	202.	$\frac{20}{100} = 0.2$
t	3	(0 -
n	12	

$A = P \left(1 + \frac{r}{n} \right)^{nt}$	
= 4000 (1+ 0.2) 12×3	
= 4000 (1+0.01667)36	
= 4000 (1.01667)36	
= 4000 (1.81313)	
=\$7252.52 1002 + 81.31	2

b. How much will he owe after 10 years?

Α	?	
ı		
Р	4000	
r	20%=	20 = 0.2
t	10	
n	12	

$A = P(1 + \frac{r}{n})^{n+1}$		
= 4000 (1+ 0.2) 12×10		
= 4000 (1+0.01667)		
= 4000 (1.01667)120		
* 4000 (7.26825)	+ 5091	626.837
=\$ 29 073.02	/6	

2. Find the total value of the a \$7 300 investment at 7% compounded semiannually for 3 years.

Α	?	
ı		
Р	7300	
r	7% =	$\frac{7}{100} = 0.07$
t	3	Ť
n	2	

$$A = P(1+\frac{r}{n})^{nt}$$
= 7300 (1+\frac{0.07}{2})^{2\times 3}
= 7300 (1+0.035)^{6}
= 7300 (1.035)^{6}
= 7300 (1.22926)
= \$8973.56

3. Find the interest owed on a \$21 000 if the annual interest rate is 13.6% compounded guarterly for 4

ycars.	
Α	
ı	7.
Р	21000
r	13.6 =
t	4
n	4

A = P(1+ =)nt

$$= 21000 \left(1 + \frac{0.86}{4}\right)^{4 \times 4} \qquad 35854.85 = 210007$$

4. Find the interest earned on a \$12,700, invested at 8.8% compounded daily for 1 year.

Α	
-	?.
Р	12700
r	8.8 =
t	1
n	365

13.6 = D.136

$$A = P(1+\frac{r}{n})^{n+1}$$

$$= 12700(1+\frac{0.088}{365})^{365\times1}$$

$$= 12700(1+0.000241)^{365}$$

$$= 12700(1+0.000241)^{365}$$

$$= 12700(1+0.000241)^{365}$$

$$= 12700(1+0.000241)^{365}$$

5. Find the interest you would owe on a line of credit debt of \$55,000 at 6% compounded monthly for 2

A = P+T 35864.85 = 21000+I

A = P + T

T = \$1 168.10

years.

100 = 0.06

A= P(1+ =) nt $= 55000(1 + 0.06)^{12 \times 2}$ = 55000 + T = 55000= 55000 (1+ 0.005)²⁴ = 55000 (1.005)24 = 55000 (1.12716)

6. Find the total value of \$1,500 invested at 7%, compounded annually for 3 years.

Α	?	
I		
Р	1500	
r	79. =	= 0.07
t	3	
n	1	

$$A = P(1 + \frac{1}{n})^{nt}$$

$$= 1500 (1 + 0.07)^{1 \times 3}$$

$$= 1500 (1 + 0.07)^{3}$$

$$= 1500 (1.07)^{3}$$

$$= 1500 (1.22504)$$

$$= 1837.56$$

7. What is the total value of a \$130 debt at loaned out at 9.4%, compounded quarterly for 2 years?

Α	?
I	
Р	136
r	9.47.=
t	2
n	4

$$A = P(1+r)^{mt}$$

$$= 130(1+0.094)^{4\times2}$$

$$= 130(1+0.0235)^{8}$$

$$= 130(1.0235)^{8}$$

$$= 130(1.20421)$$

$$= $156.55$$