Name: \qquad Date: \qquad

Amount	A	The full amount after the loan or investment is complete				
Interest	I	The amount of money owed at the end of term				
Principle	P	Initial amount of the loan or investment				
Rate	r	Annual interest rate bused as a decimal)	$	$	Term	t
:---:	:---:					
Length of the loan or investment						
compounding Period	n					
How many times a year interest is						
calculated and added						

$$
\begin{array}{ccc}
A=P\left(1+\frac{r}{n}\right)^{n t} \begin{array}{c}
\text { \# of times } \\
\text { over the } \\
\text { term interest }
\end{array} & A=P+I \\
\text { maintains add is calculated } & -P-P \\
\text { the } \begin{array}{cc}
\text { add } & I=A-P \\
\text { principle interest and added } &
\end{array}
\end{array}
$$

1. If Greg invested $\$ 500$ for 5 years, compounded monthly, at a rate of 6%, how much interest would he earn on his investment?

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
&=500\left(1+\frac{0.06}{12}\right)^{12 \times 5} \\
&=500(1+0.005)^{60} \\
&=500(1.005)^{60} \\
&=500(1.34885) \\
&={ }^{\$} 674.43
\end{aligned}
$$

2. Sam charges $\$ 4000.00$ to a credit card that charges 20.00% interest per annum, compounded monthly.
a. How much will he owe after 3 years?

A	$?$
I	
P	4000
r	202
t	3
n	12

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
& =4000\left(1+\frac{0.2}{12}\right)^{12 \times 3} \\
& =4000(1+0.01667)^{36} \\
& =4000(1.01667)^{36} \\
& =4000(1.81313) \\
& =\$ 7252.52 \quad 100 \%+81.312
\end{aligned}
$$

b. How much will he owe after 10 years?

A	$?$
1	
P	4000
r	$20 \%=$
t	10
n	12

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
& =4000\left(1+\frac{0.2}{12}\right)^{12 \times 10} \\
& =4000(1+0.01667)^{120} \\
& =4000(1.01667)^{120} \\
& =4000(7.26825) \\
& =\$ 29073.02
\end{aligned}
$$

2. Find the total value of the a $\$ 7300$ investment at 7% compounded semiannually for 3 years.

A	$?$
1	
P	7300
r	$7 \%=\frac{7}{100}=0.07$
t	3
n	2

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
& =7300\left(1+\frac{0.07}{2}\right)^{2 \times 3} \\
& =7300(1+0.035)^{6} \\
& =7300(1.035)^{6} \\
& =7300(1.22926) \\
& =\$ 8973.56
\end{aligned}
$$

3. Find the interest owed on a $\$ 21000$ if the annual interest rate is 13.6% compounded quarterly for 4
years

A	
1	$?$
P	21000
r	$13.6=$
t	4
n	4

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
& =21000\left(1+\frac{0.136}{4}\right)^{4 \times 4} \\
& =21000(1+0.034)^{16} \\
& =21000(1.034)^{16} \\
& =21000(1.70737) \\
& =\$ 35854.85
\end{aligned}
$$

4. Find the interest earned on a $\$ 12,700$, invested at 8.8% compounded daily for 1 year.

A	
I	$?$
P	12700
r	$8.8=$
t	1
n	365

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
& =12700\left(1+\frac{0.088}{365}\right)^{365 \times 1} \\
\frac{8.8}{100}=0.088 & =12700(1+0.000241)^{365} \\
& =12700(1.000241)^{365} \\
& =12700(1.0919765) \\
& =\$ 13868.10
\end{aligned}
$$

$$
A=P+I
$$

$$
=12700\left(1+\frac{0.088}{365}\right)^{365 \times 1} \quad \begin{array}{ll}
13868.10= & 12700+I \\
& -12700-12700
\end{array}
$$

5. Find the interest you would owe on a line of credit debt of $\$ 55,000$ at 6% compounded monthly for 2
years.

A	
1	$?$
P	55000
r	$6 \%=$
t	2
n	12
100	

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$$
\begin{aligned}
& A \\
& 6
\end{aligned}
$$

$$
=55000\left(1+\frac{0.06}{12}\right)^{12 \times 2}
$$

$$
=55000(1+0.005)^{24}
$$

$$
=55000(1.005)^{24}
$$

$$
=55000(1.12716)
$$

$$
=61993.79
$$

$$
A=P+I
$$

$$
61993.79=55000+I
$$

$$
-55000 \quad-55000
$$

$$
I=\$ 6993.79
$$

6. Find the total value of $\$ 1,500$ invested at 7%, compounded annually for 3 years.

A	$?$
I	
P	1500
r	77.
t	3
n	1

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
& =1500\left(1+\frac{0.07}{1}\right)^{1 \times 3} \\
& =1500(1+0.07)^{3} \\
& =1500(1.07)^{3} \\
& =1500(1.22504) \\
& =\$ 1837.56
\end{aligned}
$$

7. What is the total value of a $\$ 130$ debt at loaned out at 9.4%, compounded quarterly for 2 years?

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
& =130\left(1+\frac{0.094}{4}\right)^{4 \times 2} \\
& =130(1+0.0235)^{8} \\
& =130(1.0235)^{8} \\
& =130(1.20421) \\
& =\$ 156.55
\end{aligned}
$$

