Name: $\qquad$ Date: $\qquad$

Finite limits and continuity.

There are three methods that we looked at for computing limits last day:
1.
2.
3.

We will apply these methods to four different types of limits:
1.
2.
3.
4.

We say that the limit of $f(x)$ is $L$ as $x$ approaches $a$ and write

$$
\lim _{x \rightarrow a} f(x)=L
$$

provided we can make $f(x)$ as close to $L$ as we want for all $x$ sufficiently close to $a$, from both sides without letting $x$ be $a$.

## Numerical

Example Determine each limit numerically.
a. $\lim _{x \rightarrow 3} x^{2}$
b. $\lim _{x \rightarrow 2} \frac{x}{x-2}$

## Day 1

## Graphically

Example Verify the above limits graphically.
a. $\lim _{x \rightarrow 3} x^{2}$

b. $\quad \lim _{x \rightarrow 2} \frac{x}{x-2}$


Example Use the graph of the function to determine the limit.

$$
\lim _{x \rightarrow 2} \frac{x^{2}+4 x-12}{x^{2}-2 x}
$$


$\square$

