Name:

Date: _____

Learning Goal 3.1

Using all basic derivative rules.

Constant Rule

Power Rule

$$f(x) = x$$

$$f(x) = x^2$$

$$f(x) = x^3$$

$$f(x) = x^4$$

$$f(x) = x^5$$

Example Use different notations to represent the derivatives of the following.

a.
$$f(x) = x^6$$
 b. $y = x^{1000}$

b.
$$y = x^{1000}$$

c.
$$v = s^3$$

d.
$$\frac{d}{dr}(r^4)$$

e.
$$f(x) = \frac{1}{x^2}$$
 f. $y = \sqrt[3]{x^2}$ g. $f(x) = x\sqrt{x}$

f.
$$y = \sqrt[3]{x^2}$$

$$g. \quad f(x) = x\sqrt{x}$$

Constant Multiple Rule

Sum and Difference Rule

Example

$$a. \quad f(x) = 3x^4$$

b.
$$\frac{d}{dx}(-x)$$

a.
$$f(x) = 3x^4$$
 b. $\frac{d}{dx}(-x)$ c. $\frac{d}{dx}(x^4 - 10x^3 + 6x + 5)$ d. $y = \sqrt{x}(x - 1)$

$$d. \quad y = \sqrt{x} (x - 1)$$

Example Find the equation of the tangent line to the curve $y = (1 + 2x)^2$ at (1, 9).