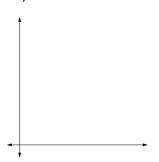
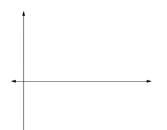
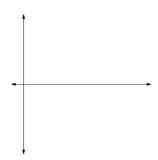
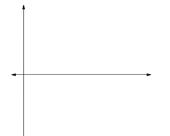

Name: _____

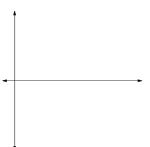

Date: _____

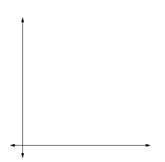

Learning Goal 4.1

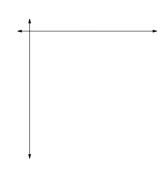

Using derivative tests for curve sketching.

Concavity given that f'(c) = 0, we have three cases

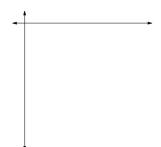


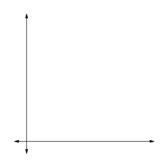


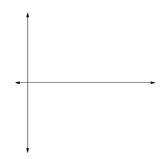




And this is how f'(x) is changing in each case







And this is how f''(x) is changing in each case.

Example Discuss the concavity of $y = \sqrt{x}$ and $y = \sqrt[3]{x}$.

Concavity can replace the First Derivative Test too!

obligative for the first period to the first too.				
Theorem				

Inflection Points are points (c, f(c)) where

Example Given that $y = x^4 - 4x^3$, find the inflection points, the intervals over which the function is concave up or down, and use f''(x) to find any local extrema.