Name:	Date:
-------	-------

	Examining angles in standard position in both radians and
Learning Goal 4.1	degrees. Exploring the unit circle, reference and coterminal
	angles and special angles.

Recall Special Angle Triangles

The Unit Circle

Example Find the equation of a circle, centered at the origin, with a radius of 5.

Example Find the co-ordinate(s) of all points on the unit circle that satisfy the conditions below. Include a diagram in your solution.

a. $x - \text{coordinate of } \frac{3}{4}$.

b. $y - \text{coordinate of } \frac{1}{\sqrt{3}}$.

Note $P(\theta) = (x, y)$ means we want the angle, θ , in standard position, that has the coordinates specified where the terminal arm of the angle intersects the unit circle.

Example Evaluate $P(\pi) = (x, y)$.

Example Given $P(\theta) = (0, -1)$, find θ in radians.

Example Evaluate.

a.
$$P\left(\frac{2\pi}{3}\right)$$

b.
$$P\left(\frac{5\pi}{4}\right)$$

c.
$$P\left(\frac{\pi}{3}\right)$$

Example Identify the measure for the central angle θ in the interval $0 \le \theta \le 2\pi$ such that $P(\theta)$ is the given point.

a.
$$\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

b.
$$\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$