Name: \qquad Date: \qquad | Learning Goal 5.1 | $\begin{array}{l}\text { Express an entire radical as a simplified mixed radical and vice } \\ \text { versa. Identify and order irrational numbers. }\end{array}$ |
| :--- | :--- |

Multiple Strategies exist for evaluating radicals.

$\sqrt[3]{8 \cdot 27}=$	
Direct (with a calculator)	

$\sqrt{0.0169=}$	
Direct (with a calculator)	

Guess which one we're more interested in . !!!

Consider

$\sqrt{24 x^{5}}=$	
Direct (with a calculator)	

This process is going from an \qquad radical to a \qquad radical.

Again! Write the radical in simplest form. What are the restrictions on the variables, if any?

1. $\sqrt{63}$
2. $\sqrt[3]{108}$
3. $\sqrt[4]{128}$
4. $\sqrt{30 x^{4}}$
5. $\sqrt[3]{32 y^{5}}$
6. $\sqrt[4]{48 a^{2} b^{7}}$

Backwards! Write each mixed radical as an entire radical. What are the restrictions on the variables, if any?

1. $7 \sqrt{3}$
2. $2 \sqrt[3]{4}$
3. $2 \sqrt[5]{3}$
4. $3 x \sqrt[3]{5 x}$
5. $8 p \sqrt{2 q}$
6. $3 m^{3} \sqrt[3]{4 m^{3}}$
