Name:_____

Date: _____

Learning Goal 5.1	Express an entire radical as a simplified mixed radical and vice
	versa. Identify and order irrational numbers.

Convert each mixed radical into an entire radical. State the values of the variable for which the radical is a real number.

1.
$$4\sqrt{3} = \sqrt{4^2 \times 3}$$

 $= \sqrt{16 \times 3}$
 $= \sqrt{48}$
2. $j^3\sqrt{j} = \sqrt{(j^3)^2 \times j}$
 $= \sqrt{j^6 \times j}$
 $= \sqrt{j^7}$
3. $2k^2(\sqrt[3]{4k}) = \sqrt[3]{(2k^2)^3 \times 4k}$
 $= \sqrt[3]{8k^6 \times 4k}$
 $= \sqrt[3]{32k^7}$
4. j^7 can result in a regative number, so $j \ge 0$
4. You can take the cube root of any real number, so $k \in \mathbb{R}$

Express each entire radical as a mixed radical in simplest form. Identify any restrictions on the values for the variables.

1.
$$\sqrt{52} = \sqrt{2^2 \times 13}$$

 $= 2\sqrt{13}$
2. $\sqrt[4]{m^7} = \sqrt[4]{m^4 \times m^3}$
 $= m\sqrt[4]{m^3}$
3. $\sqrt{63n^7p^4}$
 $= \sqrt{3^2 \times 7 \times n^6 \times n \times p^4}$
 $= (3 \times n^3 \times p^2)\sqrt{7 \times n}$
 $= 3n^3p^2\sqrt{7n}$
 n^7 can result in a negative number, so
 $m \ge 0$
 n^7 can result in a negative number, so
 $n \ge 0$