Name: \qquad Date: \qquad

Learning Goal 5.1

Express an entire radical as a simplified mixed radical and vice versa. Identify and order irrational numbers.

Convert each mixed radical into an entire radical. State the values of the variable for which the radical is a real number.

$$
\text { 1. } \quad \begin{aligned}
4 \sqrt{3} & =\sqrt{4^{2} \times 3} \\
& =\sqrt{16 \times 3} \\
& =\sqrt{48}
\end{aligned}
$$

2. $\quad \begin{aligned} j^{3} \sqrt{j} & =\sqrt{\left(j^{3}\right)^{2} \times j} \\ & =\sqrt{j^{6} \times j} \\ & =\sqrt{j^{7}}\end{aligned}$
j^{7} can result in a negative number, so
$j \geq 0$
3. $2 k^{2}(\sqrt[3]{4 k})=\sqrt[3]{\left(2 k^{2}\right)^{3} \times 4 k}$
$=\sqrt[3]{8 k^{6} \times 4 k}$
$=\sqrt[3]{32 k^{7}}$
You can take the cube root of any real number, so $k \in \mathbb{R}$

Express each entire radical as a mixed radical in simplest form. Identify any restrictions on the values for the variables.

1. $\sqrt{52}=\sqrt{2^{2} \times 13}$

$$
=2 \sqrt{13}
$$

$$
\text { 2. } \quad \begin{aligned}
\sqrt[4]{m^{7}} & =\sqrt[4]{m^{4} \times m^{3}} \\
& =m \sqrt[4]{m^{3}}
\end{aligned}
$$

$$
m^{3} \text { can result in a }
$$

negative number, so

$$
m \geq 0
$$

$$
\text { 3. } \quad \begin{aligned}
& \sqrt{63 n^{7} p^{4}} \\
= & \sqrt{3^{2} \times 7 \times n^{6} \times n \times p^{4}} \\
= & \left(3 \times n^{3} \times p^{2}\right) \sqrt{7 \times n} \\
= & 3 n^{3} p^{2} \sqrt{7 n}
\end{aligned}
$$

n^{7} can result in a negative number, so

$$
n \geq 0
$$

