Name: \qquad Date: \qquad
Recall A quadratic function can be written in

- Standard Form $y=a x^{2}+b x+c$ $\tau_{y \text {-intercept }}$
- Factored Form

$$
\begin{aligned}
y=(x-m) & (x-n) \\
& (m \text { intercepts }(m) \\
& (n, 0)
\end{aligned}
$$

- Vertex Form

$$
y=a(x-p)^{2}+q
$$

$$
\operatorname{vertex}(p, q)
$$

Example On the following graph identify the following features:
a. vertex, $(1,-9)$
b. axis of symmetry, $x=1$
c. x-intercept, and $(4,0)$
d. y-intercept.

$$
(0,-8)
$$

e. Predict whether a, b, and c are positive, negative or zero.
$y=a x^{2}+b x+c$
a positive
have a maximum
$\begin{aligned} & \text { or a minimum } \\ & \text { value? What is it? }\end{aligned} \quad y=-0$

Example Consider the quadratic function $y=x^{2}-6 x+5$.

- From this form of the equation we know the Standard form

$$
y \text {-intercept }(0,5)
$$

- If we factor this equation, we will know the

$$
\begin{aligned}
& -1 \times-5=5 \quad 1 \times 5 \\
& -1+-5=-6
\end{aligned}
$$

- We can find the vertex by

$$
\begin{gathered}
y=(x-1)(x-5) \text { factored form } \\
x-1=0 \quad x^{2}-5=0 \quad x \text {-intercepts. } \\
x=1 \quad x=5
\end{gathered}
$$

- The axis of symmetry

80 my vertex is when $x=3$
so my axis of symmetry is when $x=3$
Complete the table of values (if necessary) and then graph the function.

Determine the following features.

x	0	1	2	3	4	5	6
y	5	0		-4		0	5

a. y-intercept, $(0,5)$
b. x-intercept,

$$
(1,0),(5,0)
$$

c. vertex, and

$$
\begin{aligned}
& \text { c. vertex, and } \\
& \quad y=(3)^{2}-6(3)+5 \\
& \text { d. axis of symmetry. }=9-18+5=-4
\end{aligned}
$$

$$
x=3
$$

e. Does the function have a maximum or a minimum value? What is it?
y-int x-int x-int.

$$
\frac{m_{\text {at is it }}^{\text {at }} \text { imam }}{\text { unction }}, y=-4
$$

f. Domain (possible x-values)

$$
x \in \mathbb{R} \text { this will be }
$$

g. Range

$$
\text { Lpossible } y \text {-values }
$$

Example Show that points $(3,24)$ and $(-5,24)$ lie on the parabola defined by the function

$$
f(x)=2 x^{2}+4 x-6
$$

tee
a. Does $f(x)$ have a maximum or minimum value?

$$
\rightarrow \text { smiling } \bigcup_{(-1,-8)}
$$

minimum
b. Determine the coordinates of the vertex.

$$
\begin{aligned}
x=-1 \quad f(-1) & =2(-1)^{2}+4(-1)-6 \\
& =2-4-6
\end{aligned}
$$

$$
(-1,-8)=-8
$$

Example Factor the equation below. From your factorization, find the equation of the axis of symmetry, and through that, the vertex. State the domain and range of the function.

$$
\begin{aligned}
y & =-(-1)^{2}-2(-1)+3 \\
& =-1+2+3=4
\end{aligned}
$$

$$
=-1+2+3=4
$$

$$
\underset{\text { Quiz Next Day! }}{p .368}
$$

$$
\begin{aligned}
& \begin{array}{c}
\frac{4}{4} \times \frac{-1}{4}=-4 \quad y=(x+4)(x-1) \\
\underbrace{-1}_{-4}=3 \quad \underbrace{5}_{2.5} \quad x+4=0 \quad x=-4 \quad x=1 \\
\underbrace{-1.5}_{2.5} \\
x=1
\end{array} \\
& \begin{aligned}
y & =(-1.5)^{2}+3(-1.5)-4 \\
& =2.25-4.5-4
\end{aligned} \\
& \text { Assignment } \\
& =-6.25
\end{aligned}
$$

