Section 8.3 Laws of Logarithms Day 1

Name:	Date:

Learning Goal 8.1	Solving exponential and logarithmic equations with same base
	and with different bases, including base e .

Example Recall that

$$\log_b b =$$

and since logarithms and exponentials are opposite operations,

$$\log_{\mathbf{b}} b^c =$$

Power Law		

Example Recall that $c^x c^y = c^{x+y}$, and let's extend that to logarithms.

Product Law

Example Recall that $c^x/c^y = c^{x-y}$, and let's extend that to logarithms.

Quotient Law

Example Write each expression in terms of individual logarithms.

a.
$$\log_6 \frac{xy}{z}$$

b.
$$\log_7 \sqrt{xy}$$

Example Simplify using logarithm laws.

a.
$$\log 25 + \log 4$$

b.
$$\log_5 50 - \log_5 0.4$$

c.
$$3\log_3 6 - 4\log_3 2 + \frac{1}{2}\log_3 4$$

Example If $\log_2 5 = p$, express each logarithm in terms of p.

b.
$$\log_2\left(\frac{\sqrt[3]{5}}{2}\right)$$