Section 8.3 Laws of Logarithms Day 1

Logarithmic Functions

Name:

Date: _____

Learning Goal 8.1

Solving exponential and logarithmic equations with same base and with different bases, including base e.

More Questions – Solutions

Power Law	Product Law	Quotient Law
$\log_b x^y = y \log_b x$	$\log_b(xy) = \log_b x + \log_b y$	$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$

1. Write each expression in terms of individual logarithms.

a.
$$\log_4 \frac{x}{yz}$$

$$= \log_4 x - \log_4 yz$$

$$= \log_4 x - (\log_4 y + \log_4 z)$$

$$= \log_4 x - \log_4 y - \log_4 z$$

b.
$$\log_3\left(\frac{9}{\sqrt[3]{x^2}}\right)$$

 $= \log_3 9 - \log_3 \sqrt[3]{x^2}$
 $= 2 - \log_3 x^{2/3}$
 $= 2 - \frac{2}{3}\log_3 x$
 $= \frac{6 - 2\log_3 x}{3}$
 $= \frac{2(3 - \log_3 x)}{3}$

2. Simplify using logarithm laws.

a.
$$\log_4 48 + \log_4 \left(\frac{2}{3}\right) + \log_4 8$$

$$= \log_4 \left(48 \times \frac{2}{3}\right) + \log_4 8$$

$$= \log_4 (32) + \log_4 8$$

$$= \log_4 (32 \times 8)$$

$$= \log_4 (256)$$

$$= \log_4 (4^4)$$

$$= 4$$

b.
$$\log_6 \sqrt{12} + \log_6 \sqrt{3}$$

 $= \log_6 \sqrt{12} \times \sqrt{3}$
 $= \log_6 \sqrt{36}$
 $= \log_6 6$
 $= 1$

c.
$$n \log_b x + \log_b x^{4-n} - \log_b x^{2n+3}$$

$$= \log_b x^n + \log_b x^{4-n} - \log_b x^{2n+3}$$

$$= \log_b (x^n \times x^{4-n}) - \log_b x^{2n+3}$$

$$= \log_b (x^{n+(4-n)}) - \log_b x^{2n+3}$$

$$= \log_b x^4 - \log_b x^{2n+3}$$

$$= \log_b \left(\frac{x^4}{x^{2n+3}}\right)$$

$$= \log_b (x^{4-(2n+3)})$$

3. Given that $\log 2 = x$ and $\log 3 = y$, express each of the following in terms of x and y.

a.
$$\log 6$$

$$= \log(2 \times 3)$$

$$= \log 2 + \log 3$$

$$= x + y$$

 $= \log_b x^{1-2n}$ $= (1 - 2n) \log_b x$

b.
$$\log\left(\frac{4}{9}\right)$$

$$= \log\left(\frac{2^2}{3^2}\right)$$

$$= \log(2^2) - \log(3^2)$$

$$= 2\log 2 - 2\log 3$$

$$= 2x - 2y$$

$$= 2(x - y)$$