Name: \qquad Date: \qquad

Learning Goal 0.1

Expectations for graphing from previous years.

1. For each of the following functions, determine
a. The type of function.
b. The x-intercept(s).
c. The y - intercept.
i. Radical
i.

$$
\begin{aligned}
\sqrt{x+4} & =0 \\
x+4 & =0 \\
x & =-4
\end{aligned}
$$

i. $\quad y=\sqrt{0+4}$
$=\sqrt{4}$
$=2$
ii. Degree 3 polynomial
ii. $\quad(x+1)^{2}(x-4)=0$
$x+1=0 \quad x-4=0$
$x=-1 \quad x=4$
ii. $\quad y=(0+1)^{2}(0-4)$ $=(1)^{2}(-4)$

$$
=-4
$$

iii. Radical

$$
\text { iii. } \quad \begin{aligned}
\sqrt{x+9}-1 & =0 \\
\sqrt{x+9} & =1 \\
x+9 & =1 \\
x & =-8
\end{aligned}
$$

iii. $\quad y=\sqrt{0+9}-1$

$$
=\sqrt{9}-1
$$

$$
=3-1
$$

$$
=2
$$

iv. Rational
iv.

$$
\begin{gathered}
\frac{6}{x+3}=0 \\
\text { HA at } y=0
\end{gathered}
$$

iv. $\quad y=\frac{6}{0+3}$
$=\frac{6}{3}$
$=2$
v. Exponential
v. $\quad 3^{x}=0$

$$
\text { HA at } y=0
$$

v.
$y=3^{0}$
$=1$
i.

$$
\begin{gathered}
\{x \mid x \geq-4, x \in \mathbb{R}\} \\
\{y \mid y \geq 0, y \in \mathbb{R}\}
\end{gathered}
$$

ii.
$\{x \mid x \in \mathbb{R}\}$ $\{y \mid y \in \mathbb{R}\}$
iii.
$\{x \mid x \geq-9, x \in \mathbb{R}\}$
$\{y \mid y \geq-1, y \in \mathbb{R}\}$
iv.
$\{x \mid x \neq-3, x \in \mathbb{R}\}$ $\{y \mid y \neq 0, y \in \mathbb{R}\}$
ii.

iii.

iv.

v.
$\{x \mid x \in \mathbb{R}\}$
$\{y \mid y \geq 0, y \in \mathbb{R}\}$
v.

2. The following function is used in biology to give the growth rate of a population in the presence of a quantity of food x. This model is called 'Michaelis - Menton' kinetics.

$$
y=\frac{K x}{A+x}
$$

a. Graph the function for $K=5$ and $A=2$. What are the domain and range (consider the context of the problem)?
$\{x \mid x \geq 0, x \in \mathbb{R}\}$ $\{y \mid y \geq 0, y \in \mathbb{R}\}$

b. What is the horizontal asymptote for this function? What do you think K represents?

$$
y=5
$$

This represents the maximum growth rate of a population, no matter the availability of food.
c. Show that A represents the quantity of food for which the growth rate is at half its maximum.

Half the maximum growth rate is 2.5 ,

$$
\begin{aligned}
2.5 & =\frac{5 x}{2+x} \\
2.5(2+x) & =5 x \\
5+2.5 x & =5 x \\
5 & =2.5 x \\
x & =2=A
\end{aligned}
$$

3. In Canada, the inflation rate is about 1.8%. The value of A dollars in t years is given by the function

$$
y=A(1.018)^{t}
$$

a. What kind of model is this?

Exponential function.
b. Is the function increasing or decreasing?

Increasing function.
c. Suppose a car cost $\$ 14000$ today. Use the model to estimate the cost in 20 years.

$$
\begin{aligned}
y & =14000(1.018)^{20} \\
& =20000.47
\end{aligned}
$$

The car will cost $\$ 20000.47$ in 20 years.
d. Find the cost of a $\$ 50$ textbook in 60 years.

$$
\begin{aligned}
y & =50(1.018)^{60} \\
& =145.83
\end{aligned}
$$

The book will cost $\$ 145.83$ in 60 years.
4. During the early part of the $20^{\text {th }}$ century, the deer population in Arizona experienced a rapid increase because hunters reduced the number of predators. This depleted the food resources for the der and resulted in a population decline. For the period from 1905 to 1930, the deer population can be approximated by the following function where x is the time in years from 1905.

$$
y=-0.125 x^{5}+3.125 x^{4}+4000
$$

a. Use desmos to graph the function. What kind of function is this?

Degree 5 polynomial
b. Over what period of time was the population increasing? Decreasing?

The population increased from 1905-1925.
The population decreased from 1925 - 1930.
c. What was the maximum population of the deer? What year was that in? 104000 deer in 1925.

