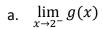
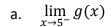
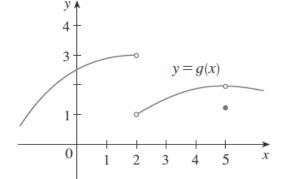
Name: _____

Learning Goal 2.1

Finite limits and continuity.


More Questions


1. The Heavyside function H is a simple switch equation defined by


$$H(t) = \begin{cases} 0, t < 0 \\ 1, t \ge 0 \end{cases}$$

Find the limit as $t \to 0$ from both sides.

2. The graph of a function g is shown. Use it to state the following values (if they exist).

b.
$$\lim_{x\to 2^+} g(x)$$

b.
$$\lim_{x\to 5^+} g(x)$$

c.
$$\lim_{x\to 2^+} g(x)$$

c.
$$\lim_{x\to 5^+} g(x)$$

3. Find each limit.

a.
$$\lim_{x \to 0} \frac{1}{x^2}$$

b.
$$\lim_{x \to \frac{\pi}{2}} \tan x$$

c.
$$\lim_{x\to 0} \ln x$$

4. For each function, sketch the graph of the function. Determine the indicated limit, if it exists.

a.
$$f(x) = \begin{cases} x + 2, x < -1 \\ -x + 2, x \ge -1 \end{cases}$$

$$\lim_{x\to -1}f(x)$$

b.
$$f(x) = \begin{cases} -x + 4, x \le 2 \\ -2x + 6, x > 2 \end{cases}$$

$$\lim_{x\to 2}f(x)$$

4. For each function, sketch the graph of the function. Determine the indicated limit, if it exists.

a.
$$f(x) = \begin{cases} x+2, x < -1 \\ -x+2, x \ge -1 \end{cases} \lim_{x \to -1} f(x)$$

b.
$$f(x) = \begin{cases} -x+4, x \le 2 \\ -2x+6, x > 2 \end{cases} \lim_{x \to 2} f(x)$$

c.
$$f(x) = \begin{cases} 4x, x \ge \frac{1}{2} \\ \frac{1}{x}, x < \frac{1}{2} \end{cases} \lim_{x \to \frac{1}{2}} f(x)$$

d.
$$f(x) = \begin{cases} 1, x < -0.5 \\ x^2 - 0.25, x \ge -0.5 \end{cases} \lim_{x \to -0.5} f(x)$$

$$\lim_{x \to \frac{1}{2}} f(x)$$

d.
$$f(x) = \begin{cases} 1, x < -0.5 \\ x^2 - 0.25, x \ge -0.5 \end{cases}$$
 $\lim_{x \to -0.5} f(x)$