Name: \qquad Date: \qquad

Learning Goal 2.2 Using trigonometric ratios and solving simple trigonometric equations.

1. The point $P(-5,-12)$ lies on the terminal arm of an angle θ, in standard position. Determine the exact trigonometric ratios for $\sin \theta, \cos \theta$ and $\tan \theta$.

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
(-5)^{2}+(-12)^{2} & =r^{2} \\
25+144 & =r^{2} \\
169 & =r^{2} \\
r & =13
\end{aligned}
$$

$$
\begin{array}{lll}
\sin \theta=\frac{y}{r} & \cos \theta=\frac{x}{r} & \tan \theta=\frac{y}{x} \\
=-\frac{12}{13} & =-\frac{5}{13} & =\frac{12}{5}
\end{array}
$$

2. Suppose θ is an angle in standard position with terminal arm in quadrant III, and $\tan \theta=1 / 5$. What are the exact values of $\sin \theta$ and $\cos \theta$?

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \\
(-5)^{2}+(-1)^{2}=r^{2} \\
25+1=r^{2} \\
26=r^{2} \\
r= \pm \sqrt{26}
\end{gathered}
$$

But we only consider $r=\sqrt{26}$ because it represents a distance measured from the origin.

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} & \cos \theta=\frac{x}{r} \\
=-\frac{5}{\sqrt{26}} & =-\frac{1}{\sqrt{26}}
\end{array}
$$

3. Determine the values of $\sin \theta, \cos \theta$ and $\tan \theta$ when the terminal arm of quadrantal angle θ coincides with the negative x - axis.

This means that the value of x is equal to the value of r (in this case I chose one because it's simple) and $y=0$.

$$
\begin{array}{lll}
\sin \theta=\frac{y}{r} & \cos \theta=\frac{x}{r} & \tan \theta=\frac{y}{x} \\
=\frac{0}{1} & =\frac{-1}{1} & =\frac{0}{-1} \\
=0 & =-1 & =0
\end{array}
$$

4. Given $\sin \theta=-0.8090$ where $0^{\circ} \leq \theta<360^{\circ}$, determine the measure of θ to the nearest tenth of a degree.

If $\sin \theta$ is negative, then the terminal arm of the angle either lives in quadrants III or IV.

$$
\begin{aligned}
\sin \theta_{R} & =-0.8090 \\
\theta_{R} & =54.0^{\circ}
\end{aligned}
$$

Quadrant III

$$
\begin{array}{lc}
\theta=180^{\circ}+\theta_{R} & \theta=360^{\circ}-\theta_{F} \\
=180^{\circ}+54^{\circ} & =360^{\circ}-54^{\circ} \\
=234.0^{\circ} & =306.0^{\circ}
\end{array}
$$

