Section 2.2 Trigonometric Ratios of Any Angle Day 1

Trigonometry

Name: ______

Date: _____

	Using trigonometric ratios and solving simple
	trigonometric equations.

1. The point P(-5, -12) lies on the terminal arm of an angle θ , in standard position. Determine the exact trigonometric ratios for $\sin \theta$, $\cos \theta$ and $\tan \theta$.

2. Suppose θ is an angle in standard position with terminal arm in quadrant III, and $\tan \theta = 1/5$. What are the exact values of $\sin \theta$ and $\cos \theta$?

$$x^{2} + y^{2} = r^{2}$$
$$(-5)^{2} + (-1)^{2} = r^{2}$$
$$25 + 1 = r^{2}$$
$$26 = r^{2}$$
$$r = \pm \sqrt{26}$$

But we only consider $r = \sqrt{26}$ because it represents a distance measured from the origin.

$$\sin \theta = \frac{y}{r} \qquad \qquad \cos \theta = \frac{x}{r}$$
$$= -\frac{5}{\sqrt{26}} \qquad \qquad = -\frac{1}{\sqrt{26}}$$

Section 2.2 Trigonometric Ratios of Any Angle Day 1

3. Determine the values of $\sin \theta$, $\cos \theta$ and $\tan \theta$ when the terminal arm of quadrantal angle θ coincides with the negative x - axis.

4. Given $\sin \theta = -0.8090$ where $0^{\circ} \le \theta < 360^{\circ}$, determine the measure of θ to the nearest tenth of a degree.

If sin θ is negative, then the terminal arm of the angle either lives in quadrants III or IV.

$$\sin \theta_R = -0.8090$$
$$\theta_R = 54.0^\circ$$