Name:
Date: \qquad

Learning Goal 3.2	Factoring, including the factor theorem and the remainder theorem.

Example Divide each of the following and provide a division statement. Identify any restrictions on the variable.

$$
x=-1
$$

a. $x^{3}-4 x^{2}+5 x-1$ by $x-5$
b. $x^{3}-4 x^{2}+5 x-1$ by $x+1$
(synthetic division)
$\left.x=5 \quad \frac{x^{2}+x+10}{x-5} \right\rvert\, \frac{x^{3}-4 x^{2}+5 x-1}{x}$

$$
\frac{-\left(x^{3}-5 x^{2}\right)}{x^{2}+5 x}
$$

$$
\frac{-1}{\mid} \begin{array}{llll}
1 & -4 & 5 & -1 \\
\downarrow & -1 & \lambda^{5} & -10 \\
1 & -5 & 10 & -11
\end{array}
$$

$$
\frac{-\left(x^{2}-5 x\right)}{10 x-1} \quad x^{3}-4 x^{2}+5 x-1=(x+1)\left(x^{2}-5 x+10\right)
$$

$$
10 x-1
$$

$$
\frac{-(10 x-50)}{49}
$$ The Remainder Theorem

When a polynomial in $x, P(x)$ is divided by $x-a$, the remainder is $P(a)$

Check: $(5)^{3}-4(5)^{2}+5(5)-1$

$$
=125-100+25-1
$$

$$
=49
$$

$$
\begin{aligned}
& (-1)^{3}-4(-1)^{2}+5(-1)-1 \\
& =-1-4-5-1 \\
& =-11
\end{aligned}
$$

Example Find the remainder of the quotient

$$
\frac{x^{4}-x^{3}+3 x-5}{x+2}>f(x)
$$

a. using long division
b. using synthetic division
c. using the remainder theorem

$$
\begin{aligned}
& x^{3}-3 x^{2}+6 x-9 \\
& x + 2 \longdiv { x ^ { 4 } - x ^ { 3 } + 0 x ^ { 2 } + 3 x - 5 } \\
& \frac{-\left(x^{4}+2 x^{3}\right)}{-3 x^{3}+0 x^{2}} \\
& -\left(-3 x^{3}-6 x^{2}\right) \\
& 6 x^{2}+3 x \\
& -\left(6 x^{2}+12 x\right) \\
& \text { Assignment } \\
& -(-9 x-18) \quad \text { p. 124 \# 1-16 } \\
& f(-2) \\
& =(-2)^{4}-(-2)^{3}+3(-2)-5 \\
& =16+8-6-5 \\
& =13
\end{aligned}
$$

Day 2

$$
f(x)=
$$

Example When $x^{3}+3 x^{2}-k x+10$ is divided by $x-5$, the remainder is 15 . Find the value of k.

$$
x=5
$$

$$
\begin{aligned}
f(5)=15 & =(5)^{3}+3(5)^{2}-k(5)+10 \\
15 & =125+75-5 k+10 \\
15 & =210-5 k \\
-210 & -210 \\
-195 & =-5 k
\end{aligned} \quad \Rightarrow k=39
$$

Example When $P(x)=3 x_{+}^{3} m x^{2}+n x-7$ is divided by $x \frac{x}{\underline{2}}$, the remainder is -3 . When $P(x)$ is divided by $x+1$, the remainder is -18 . What are the values of m and n.

$$
\begin{aligned}
P(2)=-3 & =3(2)^{3}+m(2)^{2}+n(2)-7 \\
-3 & =24+4 m+2 n-7 \\
-20 & =4 m+2 n \\
-20 & =4(n-8)+2 n \\
-20 & =4 n-32+2 n \\
\frac{12}{6} & =\frac{6 n}{6} \\
n & =2
\end{aligned}
$$

$$
P(-1)=-18=3(-1)^{3}+m(-1)^{2}+n(-1)-7
$$

$$
-18=-3+m-n-7
$$

$$
-8=m-n
$$

$$
+n \quad+n
$$

$$
m=n-8
$$

$$
=2-8
$$

$$
m=-6
$$

Exmaple $f(x)=x^{4}+3 x^{2}+2$ has the same remainder as $g(x)=x^{5}+m x^{4}+x^{3}$ when divided by $x-2$. Determine the value of m.

$$
=16+12+2
$$

$$
\begin{aligned}
g(2) & =(2)^{5}+m(2)^{4}+(2)^{3} \\
& =32+16 m+8 \\
& =40+16 m
\end{aligned}
$$

$$
\begin{aligned}
30 & =40+16 m \\
-10 & =16 m \\
m & =-\frac{10}{16}=-\frac{5}{8}
\end{aligned}
$$

