Section 3.2 The Remainder Theorem Day 2

Polynomial Functions

Name: _____ Date: _____

Learning Goal 3.2	Factoring, including the factor theorem and the remainder
	theorem.

More Questions

1. Use the Remainder Theorem to find the remainder of the following.

a.
$$(6x^2 - 10x + 7) \div (3x + 1)$$
 b. $\frac{-4x^3 - 9x + 10}{1 - 2x}$ c. $11x - 4x^4 - 7$ by $x - 3$

b.
$$\frac{-4x^3 - 9x + 10}{1 - 2x}$$

c.
$$11x - 4x^4 - 7$$
 by $x - 3$

2. For each dividend, determine the value of k if the remainder is -2.

a.
$$(2x^3 - 5x^2 - 4x + k) \div (x + 1)$$

a.
$$(2x^3 - 5x^2 - 4x + k) \div (x + 1)$$
 b. $(x^3 - 4x^2 + kx + 10) \div (x - 3)$

3. For what value of m will the polynomial $P(x) = x^3 + 6x^2 + mx - 4$ have the same remainder when it is divided by x - 1 and x + 2?

4. You can model the volume, in cubic centimetres, of a rectangular box by the polynomial function $V(x) = 3x^3 + x^2 - 12x - 4$. Determine expressions for the other dimensions of the box if the height is x + 2.