Name:

Date:

Learning Goal 7.2

I can find missing sides or identify right triangles using the Pythagorean Theorem.

The Pythagorean Theorem

Example Determine the length of the **hypotenuse**, **c**, of following right triangle.

Express your answer to the nearest tenth of a metre.

one
$$(7^2 + 6)^2 = 6^2$$

decimal $(7)^2 + (10)^2 = 6^2$
 $49 + 100 = 6^2$
 $149 = 6^2$
 $12.2 = 6$

CALCULATOR $\sqrt{149} \leftarrow 2 \text{ level}$ $149 \sqrt{149} \leftarrow 1 \text{ level}$

The length of the hypotenuse is 12.2 m.

Example Determine the length of the **leg, e,** of the right triangle. Express your answer to the nearest millimeter.

$$e^{2} + d^{2} = f^{2}$$
 $e^{2} + (9)^{2} = (41)^{2}$
 $e^{2} + 81 = 1681$
 $-81 - 81$
 $e^{2} = 1600$
 $e = 40$

The length of the triangle $\frac{1}{16^2} = \frac{1600}{1600}$ The length of the triangle leg is 40 mm.

Example Find the missing side length to the nearest tenth.

a.

b.

$$p^{2} + 10^{2} = 15^{2}$$
 $p^{2} + 100 = 225$
 $-100 - 100$
 $p^{2} = 125$
 $p = 11.1 \text{ cm}$

Example Jeremy's brand-new big screen TV measures 40" by 25". What is the length of the diagonal of the TV? Express your answer to the nearest tenth of an inch.

$$40^2 + 25^2 = h^2$$

$$1000 + 625 = h^2$$
 $12225 = h^2$

$$h = \sqrt{2225}$$

= 47.1

Jeremy's TV is listed as 47.