Date: 24/02/2020

Vame: Dhwani

Daily Check In

Learning Goal 4.1

Identify and order irrational numbers.

For each number below, write an equivalent form as the table specifies.

	As a square root	As a cube root	As a fourth root
3 =	√9	3/2743	581
0.3 =	10.09	3 0.027	450.0081

3/10

the index is super important!

How did you do?	Emerging	Developing	Proficient	Extending
(Circle one)		•••	(8)	

Name:	Jiali	1.6.	
-------	-------	------	--

Date:

Daily Check In

Learning Goal 4.1 Identify and order irrational numbers.

For each number below, write an equivalent form as the table specifies.

	As a square root	As a cube root	As a fourth root
2 =	$\sqrt{4}$	2×2×2 = 8 3/23 ->873/8	2x2x2x2 4J24-7 16 74/6
0.2 =	0.04	0.2x0.2x0.2 0.04 50.008 -> 30.23	0.2 x 0.2 x 0.2 0.2 0.04 0.00 \$ 16 4 0.24

Name: _____

Date: _____

Learning Goal 4.2

Express an entire radical as a simplified mixed radical and vice versa.

Multiple Strategies exist for evaluating radicals.

$\sqrt{0.0169} =$			
Direct (with a calculator)	0.011.0	Indirect (without a calculator)	
= 0.13	0.0169 = 169 10000		

Guess which one we're more interested in ... Indirect

!!!

Consider

$\sqrt{24} =$				
Direct (with a calculator)	Indirect (without a calculator)			
÷ 4.9	$24 = 2^{3} \times 3$ 12 2 \(\lambda \) 6 2 \(\lambda \) 3 2	$ \sqrt{24} = \sqrt{2^{3} \times 3} $ $ = \sqrt{2^{2} \times 2 \times 3} $ $ = \sqrt{2^{2} \times 2 \times 3} $ $ = \sqrt{2^{2} \times 2 \times 3} $ $ = 2 \times \sqrt{2} \times \sqrt{3} $ $ = 2 \times \sqrt{2} \times \sqrt{3} $ $ = 2 \times \sqrt{6} $		

This process is going from an entire

re 124

radical to a <u>mixed</u>

کا √ے radical

Again! Write the radical in simplest form.

1.
$$\sqrt{63} = \sqrt{3^2 \times 7}$$

4.
$$\sqrt{30}$$

2.
$$\sqrt[3]{108} = \sqrt[3]{2^2 \times 3^3}$$

$$\frac{1}{2}$$
 6. $\sqrt[4]{48}$

Hi

Backwards! Write each mixed radical as an entire radical.

1.
$$7\sqrt{3}$$

$$= \sqrt{49} \times \sqrt{3}$$

$$\Rightarrow \sqrt{7^2} \times \sqrt{3}$$

4.
$$3\sqrt[3]{5}$$

2.
$$2\sqrt[3]{4}$$

5.
$$8\sqrt{2}$$

3.
$$2\sqrt[5]{3}$$

$$= 2 \times 5 \boxed{3}$$

 $= 6 \boxed{2^5} \times 5 \boxed{3}$

6.
$$3\sqrt[3]{4}$$