\qquad

Learning Goal 4.1	The Mean Value Theorem and L'Hospital's Rule

More Questions - Solutions

1. Suppose that we know $f(x)$ is continuous and differentiable on $[6,15]$. Let's also suppose that we know $f(6)=-2$ and $f^{\prime}(x) \leq 10$. What is the largest possible value for $f(15)$?

$$
\begin{array}{rlrl}
f^{\prime}(c) & =\frac{f(b)-f(a)}{b-a} & \\
f^{\prime}(c) & =\frac{f(15)-f(6)}{15-6} & f(15)=9 f^{\prime}(c)-2 \\
f^{\prime}(c) & =\frac{f(15)+2}{9} & f(15) \leq 9(10)-2 \\
9 f^{\prime}(c) & =f(15)+2 & f(15) \leq 88
\end{array}
$$

2. A car travels 180 km in 2 hours. Its speedometer must have read how fast at least once?

$$
\begin{aligned}
\text { average speed } & =\text { secant slope } \\
& =\frac{180-0}{2-0} \\
& =90
\end{aligned}
$$

Since the instantaneous speed, or that read by the speedometer, is the same as the tangent slope, the by the MVT $f^{\prime}(x)=90 \mathrm{~km} / \mathrm{h}$ at least once.
3. Suppose that f is a differentiable function such that $f^{\prime}(x) \leq 2$ for all x. What is the largest possible value of $f(7)$ if $f(3)=5$?

$$
\begin{array}{rl}
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} & \\
f^{\prime}(c)=\frac{f(7)-f(3)}{7-3} & f(7)=4 f^{\prime}(c)+5 \\
f^{\prime}(c)=\frac{f(7)-5}{4} & f(7) \leq 4(2)+5 \\
4 f^{\prime}(c)=f(7)-5 & f(7) \leq 13
\end{array}
$$

4. Let $f(x)=x^{2}$. Find a value $c \in(-1,2)$ so that $f^{\prime}(c)$ equals the slope between the endpoints of $f(x)$ on $[-1,2]$.

$$
\begin{array}{rlrl}
f(-1)=(-1)^{2} & f(2)=(2)^{2} \\
=1 & =4 \\
\text { secant slope } & =\frac{f(2)-f(-1)}{2-(-1)} & f^{\prime}(x) & =2 x \\
& =\frac{4-1}{3} & f^{\prime}(c) & =1 \\
& =1 & 2 x & =1 \\
& & x & =\frac{1}{2}
\end{array}
$$

