Name: _____ Date: ____

	Examining angles in standard position in both radians and
Learning Goal 4.1	degrees. Exploring the unit circle, reference and coterminal
	angles and special angles.

More Questions

- 1. The point $\left(-\frac{5}{13}, -\frac{12}{13}\right)$ is the point of intersection of the terminal arm of the unit circle and angle, θ , in standard position.
 - a. Draw θ .
 - b. Find the exact value of the six trigonometric ratios for θ .
- 2. Find the exact value of each of the following, include a sketch.

b.
$$\tan\left(-\frac{4\pi}{3}\right)$$

3. Find the approximate value of each of the following. Include a sketch. Round your answer to three decimal places.

b.
$$csc(-3.98)$$

c.
$$\cot\left(\frac{9\pi}{5}\right)$$

4. Solve each of the following equations, $0 \le \theta < 2\pi$.

a.
$$\cos \theta = -0.366$$

b.
$$\csc \theta = 1.678$$

- 5. The point (2, -9) is on the terminal arm of an angle, θ , in standard position.
 - a. Draw θ .
 - b. Find the exact value of the six trigonometric ratios for θ .
- 6. Find the exact value of each of the following, where possible. Include a sketch.

b.
$$sin(540^{\circ})$$

c.
$$\cos\left(\frac{5\pi}{6}\right)$$

d.
$$\csc\left(-\frac{2\pi}{3}\right)$$

f.
$$\sec\left(\frac{\pi}{5}\right)$$

7. Solve each of the following equations, $0 \le \theta < 2\pi$. Find exact values where possible, otherwise round to the nearest thousandth of a radian.

a.
$$\cot \theta = -\sqrt{3}$$

b.
$$\sin \theta = -\frac{1}{2}$$

8. Solve each of the following equations, $-360^{\circ} \le \theta < 360^{\circ}$. Find exact values where possible, otherwise round to the nearest tenth of a degree.

a.
$$\cos \theta = -0.366$$

b.
$$\csc \theta = \sqrt{2}$$

9. Solve each of the following equations, $-\pi \leq \theta < 2\pi$. Find exact values where possible, otherwise round to the nearest thousandth of a radian.

a.
$$3\cos\theta = \cos\theta + 1$$

b.
$$\sqrt{3} \cot \theta = 1$$