Name: $\qquad$ Date: $\qquad$

| Learning Goal 5.1 | Express an entire radical as a simplified mixed radical and vice <br> versa. Identify and order irrational numbers. |
| :--- | :--- |

Example Order these numbers least to greatest.
Change them all to

$$
\begin{aligned}
4 \sqrt{13} & =\sqrt{4^{2} \times 13} & & 4 \sqrt{13}, 8 \sqrt{3}, 14, \sqrt{202}, 10 \sqrt{2} \\
& =\sqrt{16 \times 13} & 14 & =\sqrt{14^{2}} \\
& =\sqrt{208} & & =\sqrt{196} \\
8 \sqrt{3} & =\sqrt{8^{2} \times 3} & 10 \sqrt{2} & =\sqrt{10^{2} \times 2} \\
& =\sqrt{64 \times 3} & & =\sqrt{100 \times 2} \\
& =\sqrt{192} & & =\sqrt{200}
\end{aligned}
$$

$$
1.8 \sqrt{3}
$$

2. 14
3. $10 \sqrt{2}$
4. $\sqrt{202}$
$5.4 \sqrt{13}$

If the radicals all have the same index, change them to entire radicals to compare.

Example Order these numbers least to greatest.

$$
\begin{gathered}
\sqrt[3]{1}<\sqrt[3]{2}<\sqrt[3]{8} \\
1<\sqrt[3]{2}<2 \\
\sqrt[3]{2} \doteq 1.1 \\
\sqrt{1}<\sqrt{2}<\sqrt{4}
\end{gathered}
$$

$$
1<\sqrt{2}<2
$$

$$
\sqrt{2} \doteq 1.4
$$

$$
8 \sqrt{2} \doteq 9
$$



Assignment
p. $278 \# 5-10,11,19,215 \sqrt{2}$

2. $\sqrt[5]{20}$
3. 2
$4 \cdot \sqrt[4]{20}$

Recall like terms in algebra:

$$
\begin{aligned}
& 5 a+4 c+3 a-9 c+2 b \\
= & 8 a-5 c+2 b
\end{aligned}
$$

Because we don't know the value of $a, b$ and $c$, this is as far as we can go.

Example Simplify radicals and combine like terms.
a. $-\sqrt{27}+3 \sqrt{5}-\sqrt{80}-2 \sqrt{12}$
b. $\sqrt{4 c}-4 \sqrt{9 c}, \quad c \geq 0$

$$
\begin{aligned}
& =\sqrt{2^{2} \times c}-4 \sqrt{3^{2} \times c} \\
& =2 \sqrt{c}-4 \times 3 \sqrt{c} \\
& =2 \sqrt{c}-12 \sqrt{c} \\
& =-10 \sqrt{c}
\end{aligned}
$$

