Name: _____

Date: _____

versa. Identify and order irrational numbers.	Loarning Goal 5 1	Express an entire radical as a simplified mixed radical and vice
		versa. Identify and order irrational numbers.

Order these numbers least to greatest.

5,
$$3\sqrt{3}$$
, $2\sqrt{6}$, $\sqrt{23}$
5 = $\sqrt{25}$
 $3\sqrt{3} = \sqrt{3^2 \times 3}$
 $= \sqrt{3^3}$
 $= \sqrt{27}$
 $\sqrt{23} < \sqrt{24} < \sqrt{25} < \sqrt{27}$

 $\sqrt{23} < 2\sqrt{6} < 5 < 3\sqrt{3}$

Simplify radicals and combine like terms.

a.
$$2\sqrt{7} + 13\sqrt{7} = 15\sqrt{7}$$

b. $\sqrt{24} - \sqrt{6}$
 $= \sqrt{2^2 \times 6} - \sqrt{6}$
 $= 2\sqrt{6} - \sqrt{6}$
 $= \sqrt{2} + 13\sqrt{7} = 15\sqrt{7}$
 $= \sqrt{24} - \sqrt{6}$
 $= \sqrt{2} + 13\sqrt{7} = 15\sqrt{7}$
 $= \sqrt{24} - \sqrt{6}$
 $= \sqrt{2} + 13\sqrt{7} = 15\sqrt{7}$
 $= \sqrt{2} + 13\sqrt{7$

What is the exact length of AB?

Because ΔAPR is a right isosceles triangle, it is similar to this triangle, so

Because $\triangle BPR$ is a 30 - 60 - 90 triangle, it is similar to this triangle, so

 $AB = \sqrt{6} + \sqrt{6}$ $= 2\sqrt{6}$