Section 6.2 Sum, Difference and **Double Angle Identities** Day 2

Trigonometric Identities

Name:

Date: _____

Learning Goal 6.1

Using identities to reduce complexity in expressions and solve equations.

Double Angle Identities

$$\cos 2A = \cos^2 A - \sin^2 A$$
$$= 2\cos^2 A - 1$$
$$= 1 - 2\sin^2 A$$

$$\sin 2A = 2\sin A \cos A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Example Verify the identity numerically.

$$\cos 2A = \cos^2 A - \sin^2 A, \quad 4A = \frac{\pi}{4}$$

Example Express the following as a single trigonometric function of a single angle (do not evaluate).

a.
$$2\sin\left(\frac{\pi}{5}\right)\cos\left(\frac{\pi}{5}\right)$$

b.
$$4\cos^2 35^{\circ} - 2$$
 c. $\sin 60^{\circ} \cos 60^{\circ}$

c.
$$\sin 60^{\circ} \cos 60^{\circ}$$

Example If $\cos A = \frac{12}{13}$ and 4A is in the fourth quadrant, find the exact value of $\sin 2A$.

Example Prove the following equation.

$$\frac{1+\cos 2x}{\sin 2x} = \cot x$$