Section 7.1 Transformations of Exponential Functions

Name: _____

Date: _____

Learning Coal 7.1	Applying one or more transformations to an exponential				
Learning Goal 7.1	function, including translations, stretches and reflections.				

More Questions – Solutions

A culture of bacteria triples every 25 hours. The initial count of a sample shows 1000 bacteria.
a. Write an exponential function that models the given conditions.

	y = the number of bacteria after x hours						
$y = Ab^x$	A = the initial population						
$y = 1000(3)^{\frac{x}{25}}$	b = the growth rate						
	x = the amount of time passed, in hours						

b. Approximate how many bacteria will be there in 4 days?

 $4 \times 24 = 96$ hours

$$y = 1000(3)^{\frac{96}{25}}$$

 $y \approx 67943.14$ (calculator)

There will be 67 943 bacteria after 4 days.

c. How long does it take for the population to double?

y = 2000

$$2000 = 1000(3)^{\frac{x}{25}}$$
$$2 = (3)^{\frac{x}{25}}$$

(what power can you raise 3 to and get an answer of 2? Guess and check ... and we'll come back to this in the next chapter!)

 $x \approx 16$

It will take about 16 hours for the population to double.

- 2. An investment of \$500 is earning an interest at 6% annually, compounded monthly.
 - a. Write as an exponential function

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$
$$A = 500\left(1 + \frac{0.06}{12}\right)^{12t}$$

General Formula for Compound Interest $A = P \left(1 + \frac{r}{n}\right)^{nt}$

A = the full amount of the investment

P = the principle (initial investment)

r = the interest rate (as a decimal)

n = the compounding period (how many times a year the interest is calculated)

t = the term (length of the investment, in years)

er 7		1 Transformations of Exponential Functions					Exponential Functions			
b.	Graph the function. Determine the value of the investment after 5 years.		y 2000							
	$A \approx $ \$675							/		
C.	Determine how long it would take for the investment to double.									
	$t \approx 11.5$ years					_/				
d.	How long would it take for the investment to double if the interest rate is raised to 10%?									
Cha	ange the r value to 0.10 and re-graph		600-							
	$t \approx 7$ years	/	400-							

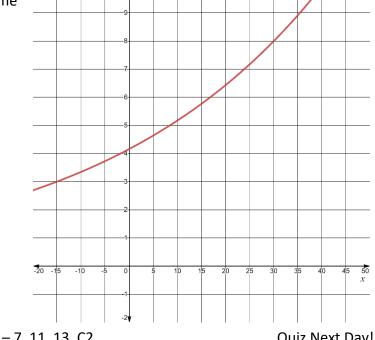
200

3. The population of BC is approx. 4.16 million in 2004. It is growing at a rate of 2.2% a year a. Write an equation expressing the population of BC and the number of years.

> $y = Ab^x$ $y = (4.16)(1.022)^x$

y = the population after x years

A = the initial population


v

b = the growth rate (don't forget the original!)

x = the amount of time passed, in years

b. Determine when the population will become 5.5 million.

$x \approx 12.5$ years

Chapter 7

p. 354 # 1 – 7, 11, 13, C2