Name: \qquad Date: \qquad

Learning Goal 7.1

Applying one or more transformations to an exponential function, including translations, stretches and reflections.

More Questions - Solutions

1. A culture of bacteria triples every 25 hours. The initial count of a sample shows 1000 bacteria.
a. Write an exponential function that models the given conditions.

$$
\begin{array}{cl}
y=A b^{x} & y=\text { the number of bacteria after } x \text { hours } \\
y=1000(3)^{\frac{x}{25}} & A=\text { the initial population } \\
b=\text { the growth rate } \\
x=\text { the amount of time passed, in hours }
\end{array}
$$

b. Approximate how many bacteria will be there in 4 days?

$$
\begin{array}{ll}
4 \times 24=96 \text { hours } & y=1000(3)^{\frac{96}{25}} \\
& y \approx 67943.14(\text { calculator })
\end{array}
$$

There will be 67943 bacteria after 4 days.
c. How long does it take for the population to double?

$$
y=2000
$$

$$
\begin{aligned}
2000 & =1000(3)^{\frac{x}{25}} \\
2 & =(3)^{\frac{x}{25}}
\end{aligned}
$$

(what power can you raise 3 to and get an answer of 2 ? Guess and check ... and we'll come back to this in the next chapter!)

$$
x \approx 16
$$

It will take about 16 hours for the population to double.
2. An investment of $\$ 500$ is earning an interest at 6% annually, compounded monthly.
a. Write as an exponential function

General Formula for Compound Interest

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$A=$ the full amount of the investment
$P=$ the principle (initial investment)
$r=$ the interest rate (as a decimal)
$n=$ the compounding period (how many times a
year the interest is calculated)
$t=$ the term (length of the investment, in years)
b. Graph the function. Determine the value of the investment after 5 years.

$$
A \approx \$ 675
$$

c. Determine how long it would take for the investment to double.

$$
t \approx 11.5 \text { years }
$$

d. How long would it take for the investment to double if the interest rate is raised to 10% ?

Change the r value to 0.10 and re-graph

$$
t \approx 7 \text { years }
$$

3. The population of $B C$ is approx. 4.16 million in 2004 . It is growing at a rate of 2.2% a year
a. Write an equation expressing the population of BC and the number of years.

$$
\begin{gathered}
y=A b^{x} \\
y=(4.16)(1.022)^{x}
\end{gathered}
$$

$y=$ the population after x years
$A=$ the initial population
$b=$ the growth rate (don't forget the original!)
$x=$ the amount of time passed, in years
b. Determine when the population will become 5.5 million.

$$
x \approx 12.5 \text { years }
$$

