Section 8.3 Laws of Logarithms Day 2

Logarithmic Functions

Name: ______

Date: _____

Learning Goal 8.1	Solving exponential and logarithmic equations with same base
	and with different bases, including base <i>e</i> .

Power Law	Product Law	Quotient Law

Example Evaluate.

a. $\log_5 75 - \log_5 3$ b. $\log_2 8$

Example Simplify.

a. $5^{\log_5(a+b)}$

b. $8^{2\log_2 m - 1/2\log_2 n^6}$

Example Change of Base

$$\log_b x = \frac{\log_a x}{\log_a b}$$

Example Write as a single logarithm.

a.
$$\frac{\log_{11} 10}{\log_{11} 5}$$
 b. $\frac{\log_3 7}{\log_3 4}$

Example Simplify by changing the base of the logarithm. Check using a calculator.

a. $\log_{27} 9$ b. $\log_8 32 + \log_{16} 2$

Example Simplify. State any restrictions on the variable.

$$4\log_3 x - \frac{1}{2}(\log_3 x + 5\log_3 x)$$

Example The decibel scale measures the loudness of sound. Each 10 unit step on the scale represents a 10 fold increase in loudness. The intensity level, β is related to I, the intensity of the sound, in watts per square metre $(W/_{m^2})$ and $I_0 = 10^{-12} W/_{m^2}$ (the faintest sound that can be heard by a person with normal hearing) by the following:

$$\beta = 10 \log \left(\frac{I}{I_0}\right)$$

Sounds that are at most 100 000 times as intense as a whisper are considered to be safe, no matter how long or how often you hear them. The sound level of a whisper is 20 dB. What sound level can be considered safe, no matter how long it lasts?