Name: \qquad Date: \qquad

Learning Goal 8.1	Solving exponential and logarithmic equations with same base and with different bases, including base e.

Power Law	Product Law	Quotient Law

Example Evaluate.
a. $\log _{5} 75-\log _{5} 3$
b. $\log _{2} 8$

Example Simplify.
a. $5^{\log _{5}(a+b)}$
b. $8^{2 \log _{2} m-1 / 2 \log _{2} n^{6}}$

Example Change of Base

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

Example Write as a single logarithm.
a. $\frac{\log _{11} 10}{\log _{11} 5}$
b. $\frac{\log _{3} 7}{\log _{3} 4}$

Example Simplify by changing the base of the logarithm. Check using a calculator.
a. $\quad \log _{27} 9$
b. $\log _{8} 32+\log _{16} 2$

Example Simplify. State any restrictions on the variable.

$$
4 \log _{3} x-\frac{1}{2}\left(\log _{3} x+5 \log _{3} x\right)
$$

Example The decibel scale measures the loudness of sound. Each 10 unit step on the scale represents a 10 fold increase in loudness. The intensity level, β is related to I, the intensity of the sound, in watts per square metre $\left(\mathrm{W} / \mathrm{m}^{2}\right)$ and $I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$ (the faintest sound that can be heard by a person with normal hearing) by the following:

$$
\beta=10 \log \left(\frac{\mathrm{I}}{\mathrm{I}_{0}}\right)
$$

Sounds that are at most 100000 times as intense as a whisper are considered to be safe, no matter how long or how often you hear them. The sound level of a whisper is 20 dB . What sound level can be considered safe, no matter how long it lasts?

