Name: \qquad Date: \qquad

Learning Goal 8.1	Solving exponential and logarithmic equations with same base and with different bases, including base e.

More Questions - Solutions

Power Law	Product Law	Quotient Law	Change of Base		
$\log _{b} x^{y}=y \log _{b} x$				\quad	$\log _{b}(x y)=$$\log _{b} x$ $+\log _{b} y$
---:					

1. Evaluate.
a. $\log _{36} 2-\log _{36} 12$
b. $2 \log _{3} 6-\frac{1}{2} \log _{3} 64+\log _{3} 2$

$$
\begin{aligned}
& =\log _{36}\left(\frac{2}{12}\right) \\
& =\log _{36}\left(\frac{1}{6}\right) \\
& =-\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\log _{3} 6^{2}-\log _{3} \sqrt{64}+\log _{3} 2 \\
& =\log _{3} 36-\log _{3} 8+\log _{3} 2 \\
& =\log _{3}\left(\frac{36}{8}\right)+\log _{3} 2 \\
& =\log _{3}\left(\frac{9}{2}\right)+\log _{3} 2 \\
& =\log _{3}\left(\frac{9}{2} \times 2\right) \\
& =\log _{3}(9) \\
& =2
\end{aligned}
$$

2. Write as a single logarithm.
a. $\frac{n \log _{a} x}{\log _{a} y}$
b. $\frac{\log _{6} 64}{\log _{6} 4}$

$$
\begin{aligned}
& =\frac{\log _{a} x^{n}}{\log _{a} y} \\
& =\log _{y} x^{n}
\end{aligned}
$$

3. Simplify by changing the base of the logarithm. Check using a calculator.
a. $\log _{125} 625$

$$
\begin{aligned}
& =\frac{\log _{5} 625}{\log _{5} 125} \\
& =\frac{4}{3}
\end{aligned}
$$

b. $\log _{8} 32+\log _{16} 2-\log _{2} 4$

$$
\begin{aligned}
& =\frac{\log _{2} 32}{\log _{2} 8}+\frac{\log _{2} 2}{\log _{2} 16}-\log _{2} 4 \\
& =\frac{5}{3}+\frac{1}{4}-2 \\
& =\frac{20}{12}+\frac{3}{12}-\frac{24}{12} \\
& =-\frac{1}{12}
\end{aligned}
$$

4. Simplify. State any restrictions on the variable.

$$
\begin{aligned}
& \quad \log _{2}\left(x^{2}-9\right)-\log _{2}\left(x^{2}-x-6\right) \\
& =\log _{2}\left(\frac{x^{2}-9}{x^{2}-x-6}\right) \\
& =\log _{2}\left(\frac{(x+3)(x-3)}{(x-3)(x+2)}\right) \quad x \neq-2,3 \\
& \quad=\log _{2}\left(\frac{x+3}{x+2}\right)
\end{aligned}
$$

5. Audiologists recommend hearing protection if the sound level in environment exceeds 85 dB . The sound level of a chainsaw is about 85 dB and the maximum level of a AirPods is about 110 dB . How times as intense is the sound of the media player, at the maximum volume, compared to the sound of a chainsaw?

Let $\beta_{A}=$ the decibel level of the AirPods and $\beta_{C}=$ the decibel level of the chainsaw.

$$
\begin{aligned}
\beta_{A}-\beta_{C} & =10 \log \left(\frac{\mathrm{I}_{A}}{\mathrm{I}_{0}}\right)-10 \log \left(\frac{\mathrm{I}_{C}}{\mathrm{I}_{0}}\right) \\
\beta_{A}-\beta_{C} & =10\left(\log \left(\frac{\mathrm{I}_{A}}{\mathrm{I}_{0}}\right)-\log \left(\frac{\mathrm{I}_{C}}{\mathrm{I}_{0}}\right)\right) \\
\beta_{A}-\beta_{C} & =10\left(\log \left(\frac{\mathrm{I}_{A}}{\mathrm{I}_{0}} \div \frac{\mathrm{I}_{C}}{\mathrm{I}_{0}}\right)\right) \\
\beta_{A}-\beta_{C} & =10\left(\log \left(\frac{\mathrm{I}_{A}}{\mathrm{I}_{0}} \times \frac{\mathrm{I}_{0}}{\mathrm{I}_{C}}\right)\right) \\
\beta_{A}-\beta_{C} & =10\left(\log \left(\frac{\mathrm{I}_{A}}{\mathrm{I}_{C}}\right)\right) \\
110-85 & =10\left(\log \left(\frac{\mathrm{I}_{A}}{\mathrm{I}_{C}}\right)\right) \\
25 & =10\left(\log \left(\frac{\mathrm{I}_{A}}{\mathrm{I}_{C}}\right)\right) \\
2.5 & =\log \left(\frac{\mathrm{I}_{A}}{\mathrm{I}_{C}}\right) \\
10^{2.5} & =\frac{\mathrm{I}_{A}}{\mathrm{I}_{C}} \\
316 & \approx \frac{\mathrm{I}_{A}}{\mathrm{I}_{C}}
\end{aligned}
$$

AirPods are over 300 times more intense than a chainsaw when at maximum volume. Turn them down!

