Name: James Gellert 1

Date: The Feb - 4/2020

Learning Goal 3.2

Given a number or set of numbers, identify the prime factorization of each element and use it to find the GCF, LCM, perfect squares or cubes and/or factored form.

Daily Check In

Without a calculator find the square root of 576, if it exists.

576 2.2.2.2.2.3.3 288 2 2.2.2.3 2.2.2.3 144 2 24 24 72 2 The squrt (oot of 576 is 24

Without a calculator find the cube root of $3^6 * 5^9 * 7^3$. Leave the number in factored form.

Excellent!

	Emerging	Developing	Proficient	Extending
How did you do? (Circle one)	69	(0)	9	9

Name:	Kirchir

Date: _____2/4

Learning Goal 3.2

Given a number or set of numbers, identify the prime factorization of each element and use it to find the GCF, LCM, perfect squares or cubes and/or factored form.

Daily Check In

Without a calculator find the square root of 676, if it exists.

338 2

26

×13

Without a calculator find the cube root of $2^9 * 3^3 * 6^6$. Leave the number in factored form.

N 23, 3, 6°

8.3.36

8,3 36

23,3,62

Nice Work!

How did you do? (Circle one)	Emerging	Developing	Proficient	Extending
			9	

Name:

Date:

Learning Goal 3.2

Given a number, a set of numbers or a polynomial expression, identify the prime factorization of each element and use it to find the GCF, LCM, perfect squares or cubes and/or factored form.

Algebra tiles are a useful model to get started with – but not sustainable.

- · too time consuming

· inconsistent positive/negative (negative area has no meaning)
· 2D is very limiting

1. 4x + 12

$$GCF(4x, 12) = 4$$

$$4x+12=4(x+3)$$

CF(4x,12) = 24x+12 = 4(x+3) = 2(2x+6) $= 2\times 2(x+3)$ factored +20

2. 10k + 20

$$10k + 20 = 10(k+2)$$

Thully factored.

3. $8q^2 + 16$

□ 16

we can't use algebratiles to make a rectangle.

$$8g^2 + 16 = 8(g^2 + 2)$$

So, to factor a polynomial (or any expression for that matter):

- 1. Find the GCF of all the terms in the expression.
- 2. Divide out the GCF from every term.
- 3. Write the product (GCF) (whatever is left)

Example

1.
$$8q^{3}p^{5} - 12q^{2}p^{10}$$
 GCF $(8g^{3}p^{5}, -12g^{2}p^{10}) = 4g^{2}p^{5}$
= $4g^{2}p^{5}(2g - 3p^{5})$

2.
$$12ab^2c^3 - 16a^3b^2c + 24a^4b^4c^4$$

3.
$$-18w^4x^5yz^2 - 54xy^9z^6 - 72w^{12}x^9y^3 - 7w^2x^8z$$