Name: _____

Date: _____

Learning Goal 5.2

Use exponent laws to evaluate expression with positive and negative rational exponents.

Recall the Product of Powers rule to simplify the following expressions.

a.
$$3^63^2$$

$$= 3^{6+2}$$

$$= 3^8$$

b.
$$6^{7}6^{2}$$
= $\sqrt{7+2}$
= $\sqrt{9}$

c.
$$7^{67}$$

$$= 7^{6+1}$$

$$= 7^{7}$$

And the Quotient of Powers rule:

d.
$$3^6 \div 3^2$$
= $3^6 - 2$
= 3^4

e.
$$\frac{6^2}{6^7} = \sqrt{2^{-7}}$$

f.
$$7 \div 7^6 = 7 - 6$$

Take a (silent) minute. What do you think the negative exponents represent?

$$= \frac{|6 \times 6|}{6 \times 6 \times 6 \times 6 \times 6 \times 6} = \frac{1}{6^5}$$

Negative exponents are related to reciprocals * if the -ve exponent is in the numerator, it moves to the denominator * if the -ve exponent is in the denominator,

it moves to the numerator.

Equations

Example Evaluate the following expressions without a calculator. Leave your answers as fractions.

a.
$$\frac{7^{-2}}{1} = \frac{1}{7^2}$$
$$= \frac{1}{49}$$

c.
$$\left(-\frac{3}{4}\right)^{-3}$$

= $\left(-\frac{4}{3}\right)^3 = -\frac{4^3}{3^3} = -\frac{64}{27}$

b.
$$\frac{(-1.5)^{-3}}{1} = \frac{1}{(-1.5)^3}$$

$$= \left(-\frac{3}{2}\right)^{-3} = \left(-\frac{2}{3}\right)^3 = \frac{(-2)^3}{(3)^3} = \frac{-8}{27}$$

d.
$$\left(\frac{10}{3}\right)^{-2}$$

$$= \left(\frac{3}{10}\right)^2 = \frac{3^2}{10^2} = \frac{9}{100}$$

Example Simplify the following expressions to a single power with only positive exponents. Do not evaluate. Show all your work.

a.
$$-((3^2 \times 3^{-7})^{-2})^2$$

= $-((3^{-5})^{-2})^2$
= $-(3^{10})^2$
= -3^{20}

c.
$$\left(-\frac{x^{-5}}{x^2}\right)^{-4}$$

$$= \left(-\frac{1}{x^5x^2}\right)^{-4}$$

$$= \left(-\frac{1}{x^7}\right)^{-4}$$

$$= \left(-x^7\right)^{4}$$

$$= 28$$

b.
$$(-(q^{-5} \times q^{-4})^2)^{-4}$$

$$= (-(q^{-9})^2)^{-4}$$

d.
$$\left(\frac{64}{32^{-2}}\right)^{-4}$$

$$= \left(\frac{2^{6}}{2^{-10}}\right)^{-4}$$

$$= \left(\frac{2^{6}}{2^{-10}}\right)^{-4}$$

$$= \left(\frac{2^{6}}{2^{10}}\right)^{-4}$$

$$= \left(\frac{1}{2^{16}}\right)^{4}$$