Name: _____

Date:

Learning Goal 9.1

I can calculate probabilities.

Experimental Probability	Theoretical Probability	Simulation
Probability based on experimental results	counting Outcomes.	model a real life situation using an experiment

Theoretical Probability Formula for Independent Events

$$P(C) = \frac{\text{the number of favourable Outcomes}}{\text{the total number of possible outcomes}}$$

 $P(C \text{ and } M) = P(C) \times P(M)$

Examples

- a. What is the probability of flipping heads and rolling a 4?
 - $P(H,+) = P(H) \times P(4)$ = $\frac{1}{2} \times \frac{1}{6}$ = $\frac{1}{12}$
- c. What is the probability of rolling a 6 twice in a row?
 - $P(6,6) = \frac{1}{6} \times \frac{1}{6}$ $= \frac{1}{36}$

b. What is the probability of flipping tails and rolling an odd number?

$$P(T,odd) = P(T) \times P(oqd)$$

= $\frac{1}{2} \times \frac{3}{6}$
= $\frac{3}{12} = \frac{1}{4}$

d. What is the probability of rolling a 5 three times in a row?

$$P(5,5,5) = \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}$$
= $\frac{1}{216}$

$$= 0.012$$

Example Lebron plays basketball for the school team. His stats show he has an 75% chance of making his first foul shot and an 80% chance of making his second shot. What is the probability that Lebron will make both his shots?

- a. Create a simulation to find the experimental probability. Repeat the simulation 10 times and record your results.
- b. What is the experimental probability that he will make both shots?

$$\frac{4}{10} = 40\%$$

c. What is the theoretical probability that he will make both shots?

$$\frac{3}{4} \times \frac{4}{5} = \frac{12}{20} = \frac{3}{5} = 60$$
first Second shot

· y	$\sqrt{\frac{\tau}{5}} =$	20	5	= 60%	
H	Second Shot				
		4.3		0	

	Experimental Results		
Trial	First	Second	Both Good
	Shot	Shot	Shots
1	X	✓	×
2	✓	X	X
3	X	\	*
4	V		\
5	V	\	1
6	V	/	
7	L	✓	\(\rightarrow\)
8	v	✓	✓
9	X	\	又
10	<u> </u>	V	V

Example Andrew has a regular coin and a three coloured spinner. Andrew wants to calculate the probability that he will flip heads and spin blue. Model this situation and record the results for 10 trials.

Trial	Experimental Results			
Trial	Flip Heads	Spin Blue	Both	
1	V	X	×	
2	✓	×	×	
3	×	X	X	
4	V	\	>	
5	×	X	X	
6	×	×	×	
7	✓	X	×	
8	×	X	X	
9	×	×	×	
10	×	*	*	

a. What is the experimental probability of this outcome?

b. What is the theoretical probability of this outcome?

$$\frac{1}{2} \times \frac{1}{3} = \frac{1}{6} = 17$$
Neads blue