Name: \qquad Date: \qquad

Learning Goal 2.2 $\begin{aligned} & \text { Using trigonometric ratios and solving simple }\end{aligned}$ trigonometric equations.

1. Determine the exact value of $\sin 240^{\circ}$.
240° is in quadrant III so $\theta_{R}=240^{\circ}-180^{\circ}=60^{\circ}$

$$
\begin{aligned}
\sin 240 & =\frac{y}{r} \\
& =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

2. Solve $\sin \theta=-1 / \sqrt{2}, \quad 0^{\circ} \leq \theta<360^{\circ}$

The sine ratio is negative in quadrants III and IV (so two solutions in the given range of values), and the value indicates that we need to consider the $45^{\circ}-45^{\circ}-90^{\circ}$ special triangle.

$$
\begin{array}{rlrl}
\theta_{1}=180^{\circ}+45^{\circ} & \theta_{2} & =360^{\circ}-45^{\circ} \\
& =225^{\circ} & & =315^{\circ}
\end{array}
$$

3. Solve $\tan \theta=-1, \quad-360^{\circ} \leq \theta<360^{\circ}$

The tangent ratio is negative in quadrants II and IV (so four solution in the given range of values) and the value indicates that we need to consider the $45^{\circ}-45^{\circ}-90^{\circ}$ special triangle.

$$
\left.\begin{array}{rlrl}
\theta_{1}=-180^{\circ}-45^{\circ} & \theta_{2} & =0^{\circ}-45^{\circ} \\
& =-425^{\circ} & & 45^{\circ}
\end{array}\right] \begin{aligned}
\theta_{1} & =360^{\circ}-45^{\circ} \\
\theta_{3}=180^{\circ}-45^{\circ} & \\
=135^{\circ} &
\end{aligned}
$$

4. Determine the exact values of the sine, cosine and tangent ratios for 210° 210° is in quadrant III which means $\theta_{R}=210^{\circ}-180^{\circ}=30^{\circ}$

$$
\begin{array}{rcc}
\sin 210^{\circ}=\frac{y}{r} & \cos 210^{\circ}=\frac{x}{r} & \tan 210^{\circ}=\frac{y}{x} \\
=-\frac{1}{2} & =-\frac{\sqrt{3}}{2} & =\frac{1}{\sqrt{3}}
\end{array}
$$

