Name: _____

Date: _____

plems.

Play Day – Solutions

1. It is found that a certain manufacturer produces q thousand units per week when the unit price is \$p. Suppose the relationship between q and p is $q^2 - 3pq + p^2 = 5$. What is the rate of change of the supply when the quantity produced is 4 000 units and the unit price is \$11, increasing at a rate of \$0.10 per week?

No picture !!

$$\begin{array}{l}
29 \quad dg \\ df \\ = 0.1 \\
g = 4 \\
p = 11
\end{array}$$

$$\begin{array}{l}
29 \quad dg \\ df \\ = 0.1 \\
g = 4 \\
p = 11
\end{array}$$

$$\begin{array}{l}
29 \quad dg \\ df \\ = 3(9 \quad df \\ df \\ = 3(9 \quad df \\ df \\ = 9 \quad df \\ df \\ = 39 \quad df \\ = 3(9 \quad df \\ df \\ = 9 \quad df \\ = 39 \quad df \\ = 39$$

2. You are inflating a spherical balloon at the rate of 7 $\text{ cm}^3/\text{s}$. How fast is the radius increasing when the radius is 4 cm?

3. Water is poured into a conical container at the rate of $10 \text{ cm}^3/\text{s}$. The cone points directly down, and it has a height of 30 cm and a base radius of 10 cm. How fast is the water level rising when the water is 4 cm deep at its deepest point?

- 4. A swing consists of a board a the end of a 10 ft long rope. Think of the board as a point P at the end fo the rope, and let Q be the point of attachment at the other end. Suppose that the swing is directly below Q at time t = 0, and is being pushed by someone who walks at 6 $\frac{\text{ft}}{\text{s}}$ from left to right.
 - a. How fast is the swing rising after 1 s?

Q		$\chi^{2} + (10 - \gamma)^{2} = 10$	$)^2$		
	$\frac{dy}{dt} = ?$	$\chi^2 + 100 - 20y + y^2$	= 100		
ID FL	Q T	$\chi^2 - 20y + y^2 =$	D	$b^{2} + (10 - y)^{2} = 10^{2}$	
	$\frac{dx}{dt} = 6 \text{ ft}/s$	$2 \times \frac{dx}{dt} = 20 \frac{dy}{dt} + 2$	$y \frac{dy}{dt} = 0$	$(10 - y)^2 = 100$	
y y	-t = 1	2(6)(6)+(2(2)-:	20) dy = 0	y = 2	
=	x = 6		$\frac{\text{off}}{16\text{dy} - 72}$		
b. What is the angular speed of the rope in rad/s after 1 s?					
P	$d\theta = 2$	$\sin \theta = \frac{\pi}{1D}$	$\frac{dy}{dt} = 4.5 f$	t /s	
0 10 ft	dt [·]	$\cos \Theta d\Theta = \perp dx$			
10Fl		dt ¹⁰ dt		ID 5	
	Are a	$\frac{d\theta}{d\theta} = \frac{1}{dx} \frac{dx}{dx} = \frac{1}{dx}$	-	COSO = <u>8</u> = <u>4</u>	
	$\frac{dx}{dx} = 6 ft/s$	dt 10 dt cose	•	10 5	
	वम				
t= コマート		= 2	2		
-1 <i>j</i> - 0		$\frac{3}{4}$ ROD/S.			
Assignment		# 1 — 19		Quiz Next Day!	

5. A road running north to south crosses a road going east to west at the point *P*. Car A is driving north along the first road and car B is driving east along the second road. At a particular time car A is 10 km to the north of *P* and travelling at 80 km/_{hr} , while car B is 15 km to the east of *P* and traveling at 100 km/_{hr} . How fast is the distance between the two cars changing?

