\qquad

Learning Goal 3.7	Creating confidence in word problems.

Play Day - Solutions

1. It is found that a certain manufacturer produces q thousand units per week when the unit price is $\$ p$. Suppose the relationship between q and p is $q^{2}-3 p q+p^{2}=5$. What is the rate of change of the supply when the quantity produced is 4000 units and the unit price is $\$ 11$, increasing at a rate of $\$ 0.10$ per week?

No picture!!
$\frac{d p}{d t}=0.1$

$$
\begin{aligned}
& q^{2}-\underbrace{-3 p q q^{p} p u c t!}+p^{2}=5 \\
& 2 q \frac{d q}{d t}-3\left(q \frac{d p}{d t}+p \frac{d q}{d t}\right)+2 p \frac{d p}{d t}=0 \\
&(2 q-3 p) \frac{d q}{d t}-3 \frac{d p}{d t}+2 p \frac{d p}{d t}=0 \\
&(8-33) \frac{d q}{d t}=3(4)(0.1)-2(11)(0.1) \\
&-25 \frac{d q}{d t}=-1.2-2.2 \\
& \frac{d q}{d t}=\frac{1}{25}=0.04
\end{aligned} \quad \Rightarrow 40 \text { units/week }
$$

$q=4$
2. You are inflating a spherical balloon at the rate of $7 \mathrm{~cm}^{3} / \mathrm{s}$. How fast is the radius increasing when the radius is 4 cm ?

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
\frac{d V}{d t} & =\frac{4}{3} \pi \times 3 r^{2} \times \frac{d r}{d t} \\
7 & =\frac{4}{3} \pi \times 3(4)^{2} \times \frac{d r}{d t} \\
7 \times \frac{1}{4 \pi} \times \frac{1}{4^{2}} & =\frac{d r}{d t}
\end{aligned}
$$

$$
\frac{d V}{d t}=7 \mathrm{~cm}^{3} / \mathrm{s}
$$

$$
\frac{d r}{d t}=\frac{7}{4^{3} \pi}=\frac{7}{64 \pi} \mathrm{~cm} / \mathrm{s}
$$

$$
\frac{d r}{d t}=?
$$

3. Water is poured into a conical container at the rate of $10 \mathrm{~cm}^{3} / \mathrm{s}$. The cone points directly down, and it has a height of 30 cm and a base radius of 10 cm . How fast is the water level rising when the water is 4 cm deep at its deepest point?

$$
10 \mathrm{~cm}^{3} / \mathrm{s}=\frac{d V}{d t}
$$

$\frac{d h}{d t}$

$$
V=\frac{1}{3} \pi r^{2} h
$$

$$
=\frac{1}{3} \pi\left(\frac{h}{3}\right)^{2} h
$$

$$
=\frac{\pi h^{3}}{3^{3}}
$$

$\frac{d V}{d t}=\frac{\pi}{3^{3}} \times 3 h^{2} \times \frac{d h}{d t}$
$10=\frac{\pi}{3^{3}} \times 3(4)^{2} \times \frac{d h}{d t}$

$$
10 \times \frac{3^{2}}{\pi} \times \frac{1}{4^{2}}=\frac{d n}{d t}
$$

$$
\Rightarrow \frac{d h}{d t}=\frac{90}{16 \pi} \mathrm{~cm} / \mathrm{s}
$$

4. A swing consists of a board a the end of a 10 ft long rope. Think of the board as a point P at the end fo the rope, and let Q be the point of attachment at the other end. Suppose that the swing is directly below Q at time $t=0$, and is being pushed by someone who walks at $6 \mathrm{ft} / \mathrm{s}$ from left to right.
a. How fast is the swing rising after 1 s ?

$$
\Rightarrow x=6
$$

$$
\begin{aligned}
& x^{2}+(10-y)^{2}=10^{2} \\
& x^{2}+100-20 y+y^{2}=100 \\
& x^{2}-20 y+y^{2}=0 \\
& 2 x \frac{d x}{d t}-20 \frac{d y}{d t}+2 y \frac{d y}{d t}=0 \\
& 2(6)(6)+(2(2)-20) \frac{d y}{d t}=0
\end{aligned}
$$

$$
\begin{aligned}
6^{2}+(10-y)^{2} & =10^{2} \\
36+(10-y)^{2} & =100 \\
(10-y)^{2} & =64 \\
10-y & =8 \\
y & =2
\end{aligned}
$$

b. What is the angular speed of the rope in $\mathrm{rad} / \mathrm{s}$ after 1 s ? $\quad 16 \frac{d y}{d t}=72$

$t=1$
$\Rightarrow x=6$
$\frac{d x}{d t}=6 \mathrm{ft} / \mathrm{s}$
$\frac{d \theta}{d t}=?$

$$
\begin{aligned}
\cos \theta \frac{d \theta}{d t} & =\frac{1}{10} \frac{d x}{d t} \\
\frac{d \theta}{d t} & =\frac{1}{10} \frac{d x}{d t} \times \frac{1}{\cos \theta} \\
& =\frac{1}{3}(6)\left(\frac{5}{4}\right)_{2}^{1} \\
& =\frac{3}{4} \mathrm{RaD} / \mathrm{s} .
\end{aligned}
$$

5. A road running north to south crosses a road going east to west at the point P. Car A is driving north along the first road and car B is driving east along the second road. At a particular time car A is 10 km to the north of P and travelling at $80 \mathrm{~km} / \mathrm{hr}$, while car B is 15 km to the east of P and traveling at $100 \mathrm{~km} / \mathrm{hr}$. How fast is the distance between the two cars changing?

