Name: \qquad Date: \qquad

Learning Goal 3.2	Factoring, including the factor theorem and the remainder theorem.

Example Which of the following number is 7 a factor of? How do you know?

$$
=7 \times 8 \text { RD }=7 \times 13+1 \quad=7 \times 108+3 \quad=7 \times 116
$$

we can write them as a PRODuct w/ No ReMainder.
Example Find the remainder when $x^{3}-6 x^{2}+7 x+6$ is divided by $x-3$?
a. Synthetic/Long Division
b. Remainder Theorem $\quad x=3$
c. So is $x-3$ a factor?
(3) $\begin{array}{cccc}1 & -6 & 7 & 6 \\ \downarrow & 3 & -9 & -6 \\ 1 & -3 & -2 & 0 \\ & & & \uparrow_{\text {Re }}\end{array}$

$$
\begin{gathered}
(3)^{3}-6(3)^{2}+7(3)+6 \\
=27-54+21+6
\end{gathered}
$$

$$
x^{3}-6 x^{2}+7 x+6=(x-3)\left(x^{2}-3 x-2\right)+0
$$

B/C the Remainder is zero, $x-3$ is a factor.
integer solution

The Factor Theorem
A polynomial, in $x, P(x)$ has a factor of $x-a$ if

$$
P(a)=0
$$

* can still use long/syntretic

Integral Zero Theorem if $x=a$ is an integral zero of a polynomial $P(x)$ with integral coefficients, the a has to be a factor of the constant term of $P(x)$

Example Which of the following could be a factor of $x^{3}+5 x^{2}+2 x-8 ? \pm 1 \pm 8 \pm 2 \pm 4$

$$
\begin{aligned}
& x+2 \\
& y e s!
\end{aligned}
$$

$$
x-7
$$

$$
x-8
$$

$$
x+16
$$

no
yes
no
(multiple vs. factor)
Show which of these, if any, is a factor.

$$
\left.\begin{array}{rccc}
-2 \left\lvert\, \begin{array}{ccc}
1 & 5 & 2 \\
\downarrow & -8 \\
\downarrow & -2 & -6
\end{array}\right. & x^{3}+5 x^{2}+2 x-8=(x+2)\left(x^{2}+3 x-4\right) \\
1 & 3 & -4 & 0
\end{array} \quad P(8)=(8)^{3}+5(8)^{2}+2(8)-8\right)
$$

so not a factor.
Remainder $=0$
$\Rightarrow x+2$ is a factor

Example Verify that $2 x-3$ is a factor of $2 x^{3}-5 x^{2}-x+6$ in two different ways.

$$
\begin{array}{rlrl}
\frac{x^{2}-x-2}{2 x-3 \mid 2 x^{3}-5 x^{2}-x+6} & P\left(\frac{3}{2}\right) & =2\left(\frac{3}{2}\right)^{3}-5\left(\frac{3}{2}\right)^{2}-\frac{3}{2}+6 \\
\frac{-\left(2 x^{3}-3 x^{2}\right)}{-2 x^{2}-x} & & =2\left(\frac{27}{8}\right)-5\left(\frac{9}{4}\right)-\frac{3}{2}+6 \\
\frac{-\left(-2 x^{2}+3 x\right)}{-4 x+6} & & \frac{27}{4}-\frac{45}{4}-\frac{6}{4}+\frac{24}{4} \\
\frac{-(-4 x+6)}{0} & =0 \\
& \text { Because the remainder is aero, }
\end{array}
$$

$$
\frac{-(-4 x+6)}{0}
$$

Example For what values of k will $x-3$ be a factor of $2 x^{3}-k x^{2}-4 x+3$? $2 x-3$ is a factor $\rightarrow P(x)$

$$
\begin{aligned}
P(3)=0 & =2(3)^{3}-k(3)^{2}-4(3)+3 \\
0 & =54-9 k-12+3 \\
0 & =45-9 k \\
9 k & =45 \\
k & =5
\end{aligned}
$$

Example Factor $x^{3}-x^{2}-5 x-3$ fully. By the integral zero theorem, the only possible integer factors will be $-1 |$| 1 | -1 | -5 | -3 |
| ---: | ---: | ---: | ---: |
| \downarrow | -1 | 2 | 3 |
| | -2 | -3 | 0 |

$$
\begin{aligned}
& =(x+1)\left(x^{2}-2 x-3\right) \frac{-3}{\frac{-3}{-3}} \times \frac{1}{1}=-3 \\
& =(x+1)(x-3)(x+1) \\
& =(x+1)^{2}(x-3)
\end{aligned}
$$

