Name: \qquad
\qquad

Learning Goal 3.2	Factoring, including the factor theorem and the remainder theorem.

More Questions

1. For what values of a could $x-a$ be a factor of $f(x)=x^{5}+6 x^{4}-5 x^{3}-30 x^{2}+4 x+24$.
2. Eliminate any binomial that is not a factor of $f(x)$.
3. Factor $f(x)$.
4. Factor $3 y^{3}+13 y^{2}-16$ fully.
5. Determine the value(s) of k so that the binomial is a factor of the polynomial.
a. $P(x)=x^{3}+5 x^{2}+k x+6$
b. $P(x)=k x^{3}-10 x^{2}+2 x+3$
$x+2$
$x-3$
6. The product of four integers is $x^{4}+7 x^{3}+7 x^{2}-15 x$, where x is one of the integers. What are the possible expressions for the other three integers?
