Proof of the Chain Rule Suppose $u=g(x)$ is differentiable at a and $y=f(u)$ is differentiable at $b=g(a)$. If Δx is an increment in x and Δu and Δy are the corresponding increments in u and y, then we can use Equation 7 to write

$$
\begin{equation*}
\Delta u=g^{\prime}(a) \Delta x+\varepsilon_{1} \Delta x=\left[g^{\prime}(a)+\varepsilon_{1}\right] \Delta x \tag{8}
\end{equation*}
$$

where $\varepsilon_{1} \rightarrow 0$ as $\Delta x \rightarrow 0$. Similarly

$$
\begin{equation*}
\Delta y=f^{\prime}(b) \Delta u+\varepsilon_{2} \Delta u=\left[f^{\prime}(b)+\varepsilon_{2}\right] \Delta u \tag{9}
\end{equation*}
$$

where $\varepsilon_{2} \rightarrow 0$ as $\Delta u \rightarrow 0$. If we now substitute the expression for Δu from Equation 8 into Equation 9, we get

So

$$
\Delta y=\left[f^{\prime}(b)+\varepsilon_{2}\right]\left[g^{\prime}(a)+\varepsilon_{1}\right] \Delta x
$$

$$
\frac{\Delta y}{\Delta x}=\left[f^{\prime}(b)+\varepsilon_{2}\right]\left[g^{\prime}(a)+\varepsilon_{1}\right]
$$

As $\Delta x \rightarrow 0$, Equation 8 shows that $\Delta u \rightarrow 0$. So both $\varepsilon_{1} \rightarrow 0$ and $\varepsilon_{2} \rightarrow 0$ as $\Delta x \rightarrow 0$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0}\left[f^{\prime}(b)+\varepsilon_{2}\right]\left[g^{\prime}(a)+\varepsilon_{1}\right] \\
& =f^{\prime}(b) g^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a)
\end{aligned}
$$

This proves the Chain Rule.

3.5 Exercises

1-6 III Write the composite function in the form $f(g(x))$. [Identify the inner function $u=g(x)$ and the outer function $y=f(u)$.] Then find the derivative $d y / d x$.

1. $y=\sin 4 x$
2. $y=\sqrt{4+3 x}$
3. $y=\left(1-x^{2}\right)^{10}$
4. $y=\tan (\sin x)$
5. $y=e^{\sqrt{x}}$
6. $y=\sin \left(e^{x}\right)$

7-42 IIII Find the derivative of the function.
7. $F(x)=\left(x^{3}+4 x\right)^{7}$
8. $F(x)=\left(x^{2}-x+1\right)^{3}$
9. $F(x)=\sqrt[4]{1+2 x+x^{3}}$
10. $f(x)=\left(1+x^{4}\right)^{2 / 3}$
11. $g(t)=\frac{1}{\left(t^{4}+1\right)^{3}}$
12. $f(t)=\sqrt[3]{1+\tan t}$
13. $y=\cos \left(a^{3}+x^{3}\right)$
14. $y=a^{3}+\cos ^{3} x$
15. $y=e^{-m x}$
16. $y=4 \sec 5 x$
17. $g(x)=(1+4 x)^{5}\left(3+x-x^{2}\right)^{8}$
18. $h(t)=\left(t^{4}-1\right)^{3}\left(t^{3}+1\right)^{4}$
20. $y=\left(x^{2}+1\right) \sqrt[3]{x^{2}+2}$
21. $y=x e^{-x^{2}}$
23. $y=e^{x \cos x}$
25. $F(z)=\sqrt{\frac{z-1}{z+1}}$
27. $y=\frac{r}{\sqrt{r^{2}+1}}$
29. $y=\tan (\cos x)$
31. $y=2^{\sin \pi x}$
33. $y=\left(1+\cos ^{2} x\right)^{6}$
35. $y=\sec ^{2} x+\tan ^{2} x$
37. $y=\cot ^{2}(\sin \theta)$
39. $y=\sqrt{x+\sqrt{x}}$
41. $y=\sin (\tan \sqrt{\sin x})$
22. $y=e^{-5 x} \cos 3 x$
24. $y=10^{1-x^{2}}$
26. $G(y)=\frac{(y-1)^{4}}{\left(y^{2}+2 y\right)^{5}}$
28. $y=\frac{e^{2 u}}{e^{u}+e^{-u}}$
30. $y=\frac{\sin ^{2} x}{\cos x}$
32. $y=\tan ^{2}(3 \theta)$
34. $y=x \sin \frac{1}{x}$
36. $y=e^{k \tan \sqrt{x}}$
38. $y=\sin (\sin (\sin x))$
40. $y=\sqrt{x+\sqrt{x+\sqrt{x}}}$
42. $y=2^{3^{x^{2}}}$

43-46 IIII Find an equation of the tangent line to the curve at the given point.
43. $y=(1+2 x)^{10}$,
$(0,1)$
44. $y=\sin x+\sin ^{2} x, \quad(0,0)$
45. $y=\sin (\sin x), \quad(\pi, 0)$
46. $y=x^{2} e^{-x} \quad(1,1 / e)$
47. (a) Find an equation of the tangent line to the curve $y=2 /\left(1+e^{-x}\right)$ at the point $(0,1)$.
(b) Illustrate part (a) by graphing the curve and the tangent line on the same screen.
48. (a) The curve $y=|x| / \sqrt{2-x^{2}}$ is called a bullet-nose curve. Find an equation of the tangent line to this curve at the point $(1,1)$.
$\#$
(b) Illustrate part (a) by graphing the curve and the tangent line on the same screen.
49. (a) If $f(x)=\sqrt{1-x^{2}} / x$, find $f^{\prime}(x)$.
(b) Check to see that your answer to part (a) is reasonable by comparing the graphs of f and f^{\prime}.
50. The function $f(x)=\sin (x+\sin 2 x), 0 \leqslant x \leqslant \pi$, arises in applications to frequency modulation (FM) synthesis.
(a) Use a graph of f produced by a graphing device to make a rough sketch of the graph of f^{\prime}.
(b) Calculate $f^{\prime}(x)$ and use this expression, with a graphing device, to graph f^{\prime}. Compare with your sketch in part (a).
51. Find all points on the graph of the function

$$
f(x)=2 \sin x+\sin ^{2} x
$$

at which the tangent line is horizontal.
52. Find the x-coordinates of all points on the curve $y=\sin 2 x-2 \sin x$ at which the tangent line is horizontal.
53. Suppose that $F(x)=f(g(x))$ and $g(3)=6, g^{\prime}(3)=4$, $f^{\prime}(3)=2$, and $f^{\prime}(6)=7$. Find $F^{\prime}(3)$.
54. Suppose that $w=u \circ v$ and $u(0)=1, v(0)=2, u^{\prime}(0)=3$, $u^{\prime}(2)=4, v^{\prime}(0)=5$, and $v^{\prime}(2)=6$. Find $w^{\prime}(0)$.
55. A table of values for f, g, f^{\prime}, and g^{\prime} is given.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

(a) If $h(x)=f(g(x))$, find $h^{\prime}(1)$.
(b) If $H(x)=g(f(x))$, find $H^{\prime}(1)$.
56. Let f and g be the functions in Exercise 55.
(a) If $F(x)=f(f(x))$, find $F^{\prime}(2)$.
(b) If $G(x)=g(g(x))$, find $G^{\prime}(3)$.
57. If f and g are the functions whose graphs are shown, let $u(x)=f(g(x)), v(x)=g(f(x))$, and $w(x)=g(g(x))$. Find each derivative, if it exists. If it does not exist, explain why.
(a) $u^{\prime}(1)$
(b) $v^{\prime}(1)$
(c) $w^{\prime}(1)$

58. If f is the function whose graph is shown, let $h(x)=f(f(x))$ and $g(x)=f\left(x^{2}\right)$. Use the graph of f to estimate the value of each derivative.
(a) $h^{\prime}(2)$
(b) $g^{\prime}(2)$

59. Use the table to estimate the value of $h^{\prime}(0.5)$, where $h(x)=f(g(x))$.

x	0	0.1	0.2	0.3	0.4	0.5	0.6
$f(x)$	12.6	14.8	18.4	23.0	25.9	27.5	29.1
$g(x)$	0.58	0.40	0.37	0.26	0.17	0.10	0.05

60. If $g(x)=f(f(x))$, use the table to estimate the value of $g^{\prime}(1)$.

x	0.0	0.5	1.0	1.5	2.0	2.5
$f(x)$	1.7	1.8	2.0	2.4	3.1	4.4

61. Suppose f is differentiable on \mathbb{R}. Let $F(x)=f\left(e^{x}\right)$ and $G(x)=e^{f(x)}$. Find expressions for (a) $F^{\prime}(x)$ and (b) $G^{\prime}(x)$.
62. Suppose f is differentiable on \mathbb{R} and α is a real number. Let $F(x)=f\left(x^{\alpha}\right)$ and $G(x)=[f(x)]^{\alpha}$. Find expressions for (a) $F^{\prime}(x)$ and (b) $G^{\prime}(x)$.
63. Suppose L is a function such that $L^{\prime}(x)=1 / x$ for $x>0$. Find an expression for the derivative of each function.
(a) $f(x)=L\left(x^{4}\right)$
(b) $g(x)=L(4 x)$
(c) $F(x)=[L(x)]^{4}$
(d) $G(x)=L(1 / x)$
64. Let $r(x)=f(g(h(x)))$, where $h(1)=2, g(2)=3, h^{\prime}(1)=4$, $g^{\prime}(2)=5$, and $f^{\prime}(3)=6$. Find $r^{\prime}(1)$.
65. The displacement of a particle on a vibrating string is given by the equation

$$
s(t)=10+\frac{1}{4} \sin (10 \pi t)
$$

where s is measured in centimeters and t in seconds. Find the velocity of the particle after t seconds.
66. If the equation of motion of a particle is given by $s=A \cos (\omega t+\delta)$, the particle is said to undergo simple harmonic motion.
(a) Find the velocity of the particle at time t.
(b) When is the velocity 0 ?
67. A Cepheid variable star is a star whose brightness alternately increases and decreases. The most easily visible such star is Delta Cephei, for which the interval between times of maximum brightness is 5.4 days. The average brightness of this star is 4.0 and its brightness changes by ± 0.35. In view of these data, the brightness of Delta Cephei at time t, where t is measured in days, has been modeled by the function

$$
B(t)=4.0+0.35 \sin (2 \pi t / 5.4)
$$

(a) Find the rate of change of the brightness after t days.
(b) Find, correct to two decimal places, the rate of increase after one day.
68. In Example 4 in Section 1.3 we arrived at a model for the length of daylight (in hours) in Philadelphia on the t th day of the year:

$$
L(t)=12+2.8 \sin \left[\frac{2 \pi}{365}(t-80)\right]
$$

Use this model to compare how the number of hours of daylight is increasing in Philadelphia on March 21 and May 21.
69. The motion of a spring that is subject to a frictional force or a damping force (such as a shock absorber in a car) is often modeled by the product of an exponential function and a sine or cosine function. Suppose the equation of motion of a point on such a spring is

$$
s(t)=2 e^{-1.5 t} \sin 2 \pi t
$$

where s is measured in centimeters and t in seconds. Find the velocity after t seconds and graph both the position and velocity functions for $0 \leqslant t \leqslant 2$.
70. Under certain circumstances a rumor spreads according to the equation

$$
p(t)=\frac{1}{1+a e^{-k t}}
$$

where $p(t)$ is the proportion of the population that knows the rumor at time t and a and k are positive constants. [In Section 9.5 we will see that this is a reasonable equation for $p(t)$.]
(a) Find $\lim _{t \rightarrow \infty} p(t)$.
(b) Find the rate of spread of the rumor.
(c) Graph p for the case $a=10, k=0.5$ with t measured in hours. Use the graph to estimate how long it will take for 80% of the population to hear the rumor.
71. The flash unit on a camera operates by storing charge on a capacitor and releasing it suddenly when the flash is set off. The following data describe the charge Q remaining on the capacitor (measured in microcoulombs, $\mu \mathrm{C}$) at time t (measured in seconds).

t	0.00	0.02	0.04	0.06	0.08	0.10
Q	100.00	81.87	67.03	54.88	44.93	36.76

(a) Use a graphing calculator or computer to find an exponential model for the charge. (See Section 1.5.)
(b) The derivative $Q^{\prime}(t)$ represents the electric current (measured in microamperes, $\mu \mathrm{A}$) flowing from the capacitor to the flash bulb. Use part (a) to estimate the current when $t=0.04 \mathrm{~s}$. Compare with the result of Example 2 in Section 2.1.72. The table gives the U.S. population from 1790 to 1860 .

Year	Population	Year	Population
1790	$3,929,000$	1830	$12,861,000$
1800	$5,308,000$	1840	$17,063,000$
1810	$7,240,000$	1850	$23,192,000$
1820	$9,639,000$	1860	$31,443,000$

(a) Use a graphing calculator or computer to fit an exponential function to the data. Graph the data points and the exponential model. How good is the fit?
(b) Estimate the rates of population growth in 1800 and 1850 by averaging slopes of secant lines.
(c) Use the exponential model in part (a) to estimate the rates of growth in 1800 and 1850. Compare these estimates with the ones in part (b).
(d) Use the exponential model to predict the population in 1870. Compare with the actual population of $38,558,000$. Can you explain the discrepancy?

CAS 73. Computer algebra systems have commands that differentiate functions, but the form of the answer may not be convenient and so further commands may be necessary to simplify the answer.
(a) Use a CAS to find the derivative in Example 5 and compare with the answer in that example. Then use the simplify command and compare again.
(b) Use a CAS to find the derivative in Example 6. What happens if you use the simplify command? What happens if you use the factor command? Which form of the answer would be best for locating horizontal tangents?
74. (a) Use a CAS to differentiate the function

$$
f(x)=\sqrt{\frac{x^{4}-x+1}{x^{4}+x+1}}
$$

and to simplify the result.
(b) Where does the graph of f have horizontal tangents?
(c) Graph f and f^{\prime} on the same screen. Are the graphs consistent with your answer to part (b)?
75. Use the Chain Rule to prove the following.
(a) The derivative of an even function is an odd function.
(b) The derivative of an odd function is an even function.
76. Use the Chain Rule and the Product Rule to give an alternative proof of the Quotient Rule.
[Hint: Write $\left.f(x) / g(x)=f(x)[g(x)]^{-1}.\right]$
77. (a) If n is a positive integer, prove that

$$
\frac{d}{d x}\left(\sin ^{n} x \cos n x\right)=n \sin ^{n-1} x \cos (n+1) x
$$

(b) Find a formula for the derivative of

$$
y=\cos ^{n} x \cos n x
$$

that is similar to the one in part (a).
78. Suppose $y=f(x)$ is a curve that always lies above the x-axis and never has a horizontal tangent, where f is differentiable
everywhere. For what value of y is the rate of change of y^{5} with respect to x eighty times the rate of change of y with respect to x ?
79. Use the Chain Rule to show that if θ is measured in degrees, then

$$
\frac{d}{d \theta}(\sin \theta)=\frac{\pi}{180} \cos \theta
$$

(This gives one reason for the convention that radian measure is always used when dealing with trigonometric functions in calculus: The differentiation formulas would not be as simple if we used degree measure.)
80. (a) Write $|x|=\sqrt{x^{2}}$ and use the Chain Rule to show that

$$
\frac{d}{d x}|x|=\frac{x}{|x|}
$$

(b) If $f(x)=|\sin x|$, find $f^{\prime}(x)$ and sketch the graphs of f and f^{\prime}. Where is f not differentiable?
(c) If $g(x)=\sin |x|$, find $g^{\prime}(x)$ and sketch the graphs of g and g^{\prime}. Where is g not differentiable?
81. Suppose P and Q are polynomials and n is a positive integer. Use mathematical induction to prove that the nth derivative of the rational function $f(x)=P(x) / Q(x)$ can be written as a rational function with denominator $[Q(x)]^{n+1}$. In other words, there is a polynomial A_{n} such that $f^{(n)}(x)=A_{n}(x) /[Q(x)]^{n+1}$.

3.6 Implicit Differentiation

The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable-for example,

$$
y=\sqrt{x^{3}+1} \quad \text { or } \quad y=x \sin x
$$

or, in general, $y=f(x)$. Some functions, however, are defined implicitly by a relation between x and y such as

$$
\begin{equation*}
x^{2}+y^{2}=25 \tag{1}
\end{equation*}
$$

or
2

$$
x^{3}+y^{3}=6 x y
$$

In some cases it is possible to solve such an equation for y as an explicit function (or several functions) of x. For instance, if we solve Equation 1 for y, we get $y= \pm \sqrt{25-x^{2}}$, so two of the functions determined by the implicit Equation 1 are $f(x)=\sqrt{25-x^{2}}$ and $g(x)=-\sqrt{25-x^{2}}$. The graphs of f and g are the upper and lower semicircles of the circle $x^{2}+y^{2}=25$. (See Figure 1.)

