Name: \qquad Date: \qquad

Learning Goal 5.3 I can multiply and divide polynomials.

- If you multiply something by 2 , that means

$$
\begin{aligned}
& \text { adding that thing to itself } \\
& \qquad 7 \times 2=7+7 \text { repeated addition. }
\end{aligned}
$$

Example Expand and simplify, if possible.
a. $2\left(3 x^{2}\right)=3 x^{2}+3 x^{2}=(2 \times 3) x^{2}$

monomial
b. 3
$=3 x^{2}+6+$ $3 x^{2}$ $+6$

$$
=(2 \times 3) x^{2}+(2 \times 6)
$$

\uparrow
binomial

$$
=3 x^{2}+3 x^{2}+6+6=6 x^{2}+12
$$

$$
=6 x^{2}+12
$$

c. $2\left(3 x^{2}-x+6\right)=3 x^{2}-x+6+3 x^{2}-x+6=(2 \times 3) x^{2}-(2 \times 1) x+(2 \times 6)$

$$
\begin{aligned}
& \uparrow \\
& \text { trinomial }
\end{aligned}=3 x^{2}+3 x^{2}-x-x+6+6=6 x^{2}-2 x+12
$$

$$
=6 x^{2}-2 x+12
$$

Invert it! For multiplication, we were given the side lengths of a rectangle and asked to find the area
For division, we are given the area and one side length and asked to find the missing sloe length

Example Simplify where possible.

a.

b.

$$
\begin{aligned}
\qquad \frac{\left(4 x^{2}+6 x\right)}{2} & =\left(\frac{4}{2}\right) x^{2}+\left(\frac{6}{2}\right) x \\
& =2 x^{2}+3 x
\end{aligned}
$$

b trinomial
c. $\frac{\left(4 x^{2}+6 x-10\right.}{2}=\left(\frac{4}{2}\right) x^{2}+\left(\frac{6}{2}\right) x-\left(\frac{10}{2}\right)$ constant

$$
=2 x^{2}+3 x-5
$$

A harder (or extending) problem would be
divide the expression by its GCF and
Find the greatest common factor of the following expression, then factor the expression. rewrite the
$3 x^{2}$

$$
\begin{aligned}
& \frac{3 x^{2}-6}{3} \\
&=\left(\frac{3}{3}\right) x^{2}-\left(\frac{6}{3}\right) \\
&=x^{2}-2 \\
& 3 x^{2}-6=3\left(x^{2}-2\right)
\end{aligned}
$$ expression as a proderct

