Section 8.3 Solving Logarithmic and Exponential Equations Logarithmic Functions Day 1

Name: _____

Date: _____

Learning Goal 8.1	Solving exponential and logarithmic equations with same base
	and with different bases, including base <i>e</i> .

Product Law	Quotient Law	Change of Base
	Product Law	Product Law Quotient Law

Example Solve for *x*.

a.
$$2^x = 2^{x^2}$$
 b. $64^{3x-1} = \left(\frac{1}{16}\right)^{2x+4}$

Example Solve for *x*. Round your answers to the nearest hundredth.

a. $2^x = 5$ b. $4^{2x-3} = 3^{x+2}$

Example Solve and check.

 $3(2^{2x-1}) = 6^x$

Example A car was purchased for \$15 000. The value of the car depreciates 15% of its previous value each year. To the nearest tenth of a year, how long will it take before it is worth only \$9 000?

Example A radioactive material has a half – life of 80 months. What percent of the sample is left after 48 months?